期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Vibration transmissibility characteristics of smart spring vibration isolation system
1
作者 倪德 朱如鹏 +2 位作者 陆凤霞 鲍和云 付秋菊 《Journal of Central South University》 SCIE EI CAS 2014年第12期4489-4496,共8页
The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equival... The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small. 展开更多
关键词 vibration transmissibility characteristics smart spring dry friction stiffness damping vibration isolation base excitation
下载PDF
Aseismic smart building isolation systems under multi-level earthquake excitations: Part II, energy-dissipation and damage reduction 被引量:2
2
作者 Min-Ho CHEY J. Geoffrey CHASE +1 位作者 John B. MANDER Athol J. CARR 《Frontiers of Structural and Civil Engineering》 CSCD 2015年第3期297-306,共10页
Based on the performance results of the previously suggested smart building isolation systems (lst companion paper), this following study verifies the control effects of the systems from the view point of energy dis... Based on the performance results of the previously suggested smart building isolation systems (lst companion paper), this following study verifies the control effects of the systems from the view point of energy dissipation and damage level metrics. Several different model cases of the strategically isolated multi-story building structures utilizing passive dampers and semi-active resettable devices are analyzed and the energy-based target indices are compared. Performance comparisons are conducted on statistically calculated story/structural hysteretic energy and story/structural damage demands over realistic suites of earthquake ground motion records, representing seismic excitations of specific return period probability. Again, the semi-active solutions show significant promise for applications ofresettable device, offering advantages over passive systems in the consistent damage reductions. The specific results of this study include the identification of differences in the mechanisms by which smart building isolation systems remove energy, based on the differences in the devices used. Less variability is also seen for the semi-active isolation systems, indicating an increased robustness. 展开更多
关键词 smart building isolation story and structural ENERGY-DISSIPATION damage assessment
原文传递
Aseismic smart building isolation systems under multi-level earthquake excitations: Part I, conceptual design and nonlinear analysis 被引量:1
3
作者 Min-Ho CHEY J. Geoffrey CHASE +1 位作者 John B. MANDER Athol J. CARR 《Frontiers of Structural and Civil Engineering》 CSCD 2015年第3期286-296,共11页
As a novel structural control strategy, tuned mass damper (TMD) inspired passive and semi-active smart building isolation systems are suggested to reduce structural response and thus mitigate structural damage due t... As a novel structural control strategy, tuned mass damper (TMD) inspired passive and semi-active smart building isolation systems are suggested to reduce structural response and thus mitigate structural damage due to earthquake excitations. The isolated structure's upper stories can be utilized as a large scaled TMD, and the isolation layer, as a core design point, between the separated upper and lower stories entails the insertion of rubber bearings and (i) viscous dampers (passive) or (ii) resettable devices (semi-active). The seismic performance of the suggested isolation systems are investigated for 12-story reinforced concrete moment resisting flames modeled as "10 ~ 2" stories and "8 + 4" stories. Passive viscous damper or semi-active resettable devices are parametrically evaluated through the optimal design principle of a large mass ratio TMD. Statistical performance metrics are presented for 30 earthquake records from the three suites of the SAC project. Based on nonlinear structural models, including P-delta effects and modified Takeda hysteresis, the inelastic time history analyses are conducted to compute the seismic performances across a wide range of seismic hazard intensities. Results show that semi-active smart building isolation systems can effectively manage seismic response for multi-degree-of freedom (MDOF) systems across a broader range of ground motions in comparison to uncontrolled case and passive solution. 展开更多
关键词 tuned mass damper smart building isolation resettable device NON-LINEAR statistical assessment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部