An approach by using neural network signal processing in associate with embedded fiberoptic sensing array for the newly developed “smart material systems and structures” is discussed in this paper.The principle,stru...An approach by using neural network signal processing in associate with embedded fiberoptic sensing array for the newly developed “smart material systems and structures” is discussed in this paper.The principle,structure of this approach and suitable neural network algorithms are described.The results of simulation experiments are also given.展开更多
Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, dif...Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.展开更多
With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distributi...With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.展开更多
Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, t...Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, the detailed analysis of the structures of improved networks show that regenerating the edges between high-degree nodes can enhance the robustness against a targeted attack. Therefore, we propose a novel rewiring strategy based on regenerating more edges between high-degree nodes, called smart rewiring, which could speed up the increase of the robustness index effectively. The smart rewiring method also explains why positive degree-degree correlation could enhance network robustness.展开更多
Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, a...Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, and body position to be continuously monitored.展开更多
In The Wireless Multimedia Sensor Network(WNSMs)have achieved popularity among diverse communities as a result of technological breakthroughs in sensor and current gadgets.By utilising portable technologies,it achieve...In The Wireless Multimedia Sensor Network(WNSMs)have achieved popularity among diverse communities as a result of technological breakthroughs in sensor and current gadgets.By utilising portable technologies,it achieves solid and significant results in wireless communication,media transfer,and digital transmission.Sensor nodes have been used in agriculture and industry to detect characteristics such as temperature,moisture content,and other environmental conditions in recent decades.WNSMs have also made apps easier to use by giving devices self-governing access to send and process data connected with appro-priate audio and video information.Many video sensor network studies focus on lowering power consumption and increasing transmission capacity,but the main demand is data reliability.Because of the obstacles in the sensor nodes,WMSN is subjected to a variety of attacks,including Denial of Service(DoS)attacks.Deep Convolutional Neural Network is designed with the stateaction relationship mapping which is used to identify the DDOS Attackers present in the Wireless Sensor Networks for Smart Agriculture.The Proposed work it performs the data collection about the traffic conditions and identifies the deviation between the network conditions such as packet loss due to network congestion and the presence of attackers in the network.It reduces the attacker detection delay and improves the detection accuracy.In order to protect the network against DoS assaults,an improved machine learning technique must be offered.An efficient Deep Neural Network approach is provided for detecting DoS in WMSN.The required parameters are selected using an adaptive particle swarm optimization technique.The ratio of packet transmission,energy consumption,latency,network length,and throughput will be used to evaluate the approach’s efficiency.展开更多
As the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are th...As the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are the cost and simplicity of the implementation method. It is clear that the major share of the total cost is referred to the internal controlling system network; although there are too many methods proposed but still there is not any satisfying method at the consumers' point of view. In this paper, a novel solution for this demand is proposed, which not only minimizes the implementation cost, but also provides a high level of reliability and simplicity of operation; feasibility, extendibility, and flexibility are other leading properties of the design.展开更多
The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were prop...The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.展开更多
Boolean control network consists of a set of Boolean variables whose state is determined by other variables in the network. Boolean network is used for modeling complex system. In this paper, we have presented a model...Boolean control network consists of a set of Boolean variables whose state is determined by other variables in the network. Boolean network is used for modeling complex system. In this paper, we have presented a model of a context-aware system used in smart home based on Boolean control networks. This modeling describes the relationship between the context elements (person, time, location, and activity) and services (Morning Call, Sleeping, Guarding, Entertainment, and normal), which is effective to logical inference. We apply semi tensor matrix product to describe the dynamic of the system. This matrix form of expression is a convenient and reasonable way to design logic control system.展开更多
The massive integration of communication and information technology with the large-scale power grid has enhanced the efficiency, safety, and economical operation of cyber-physical systems. However, the open and divers...The massive integration of communication and information technology with the large-scale power grid has enhanced the efficiency, safety, and economical operation of cyber-physical systems. However, the open and diversified communication environment of the smart grid is exposed to cyber-attacks. Data integrity attacks that can bypass conventional security techniques have been considered critical threats to the operation of the grid. Current detection techniques cannot learn the dynamic and heterogeneous characteristics of the smart grid and are unable to deal with non-euclidean data types. To address the issue, we propose a novel Deep-Q-Network scheme empowered with a graph convolutional network (GCN) framework to detect data integrity attacks in cyber-physical systems. The simulation results show that the proposed framework is scalable and achieves higher detection accuracy, unlike other benchmark techniques.展开更多
The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users...The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.展开更多
文摘An approach by using neural network signal processing in associate with embedded fiberoptic sensing array for the newly developed “smart material systems and structures” is discussed in this paper.The principle,structure of this approach and suitable neural network algorithms are described.The results of simulation experiments are also given.
基金supported in part by National Natural Science Foundation of China(61502368,61303033,U1135002 and U1405255)the National High Technology Research and Development Program(863 Program)of China(No.2015AA017203)+1 种基金the Fundamental Research Funds for the Central Universities(XJS14072,JB150308)the Aviation Science Foundation of China(No.2013ZC31003,20141931001)
文摘Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.
基金supported by the State Grid Corporation of China(KJ21-1-56).
文摘With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.
基金Supported by the Open Cooperation Research in National University of Defense Technology(NUDT)under Grant No 2014021the Graduate Innovation Fund of NUDT under Grant No B150501
文摘Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, the detailed analysis of the structures of improved networks show that regenerating the edges between high-degree nodes can enhance the robustness against a targeted attack. Therefore, we propose a novel rewiring strategy based on regenerating more edges between high-degree nodes, called smart rewiring, which could speed up the increase of the robustness index effectively. The smart rewiring method also explains why positive degree-degree correlation could enhance network robustness.
文摘Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, and body position to be continuously monitored.
文摘In The Wireless Multimedia Sensor Network(WNSMs)have achieved popularity among diverse communities as a result of technological breakthroughs in sensor and current gadgets.By utilising portable technologies,it achieves solid and significant results in wireless communication,media transfer,and digital transmission.Sensor nodes have been used in agriculture and industry to detect characteristics such as temperature,moisture content,and other environmental conditions in recent decades.WNSMs have also made apps easier to use by giving devices self-governing access to send and process data connected with appro-priate audio and video information.Many video sensor network studies focus on lowering power consumption and increasing transmission capacity,but the main demand is data reliability.Because of the obstacles in the sensor nodes,WMSN is subjected to a variety of attacks,including Denial of Service(DoS)attacks.Deep Convolutional Neural Network is designed with the stateaction relationship mapping which is used to identify the DDOS Attackers present in the Wireless Sensor Networks for Smart Agriculture.The Proposed work it performs the data collection about the traffic conditions and identifies the deviation between the network conditions such as packet loss due to network congestion and the presence of attackers in the network.It reduces the attacker detection delay and improves the detection accuracy.In order to protect the network against DoS assaults,an improved machine learning technique must be offered.An efficient Deep Neural Network approach is provided for detecting DoS in WMSN.The required parameters are selected using an adaptive particle swarm optimization technique.The ratio of packet transmission,energy consumption,latency,network length,and throughput will be used to evaluate the approach’s efficiency.
文摘As the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are the cost and simplicity of the implementation method. It is clear that the major share of the total cost is referred to the internal controlling system network; although there are too many methods proposed but still there is not any satisfying method at the consumers' point of view. In this paper, a novel solution for this demand is proposed, which not only minimizes the implementation cost, but also provides a high level of reliability and simplicity of operation; feasibility, extendibility, and flexibility are other leading properties of the design.
文摘The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.
文摘Boolean control network consists of a set of Boolean variables whose state is determined by other variables in the network. Boolean network is used for modeling complex system. In this paper, we have presented a model of a context-aware system used in smart home based on Boolean control networks. This modeling describes the relationship between the context elements (person, time, location, and activity) and services (Morning Call, Sleeping, Guarding, Entertainment, and normal), which is effective to logical inference. We apply semi tensor matrix product to describe the dynamic of the system. This matrix form of expression is a convenient and reasonable way to design logic control system.
文摘The massive integration of communication and information technology with the large-scale power grid has enhanced the efficiency, safety, and economical operation of cyber-physical systems. However, the open and diversified communication environment of the smart grid is exposed to cyber-attacks. Data integrity attacks that can bypass conventional security techniques have been considered critical threats to the operation of the grid. Current detection techniques cannot learn the dynamic and heterogeneous characteristics of the smart grid and are unable to deal with non-euclidean data types. To address the issue, we propose a novel Deep-Q-Network scheme empowered with a graph convolutional network (GCN) framework to detect data integrity attacks in cyber-physical systems. The simulation results show that the proposed framework is scalable and achieves higher detection accuracy, unlike other benchmark techniques.
基金supported in part by the State Grid Scientific and Technological Projects of China(No.SGTYHT/21-JS-223)in part by the National Natural Science Foundation of China(No.52277118),in part by the Tianjin Science and Technology Planning Project(No.22ZLGCGX00050)in part by the 67th Postdoctoral Fund and Independent Innovation Fund of Tianjin University in 2021.
文摘The smart distribution network(SDN)is integrat ing increasing distributed generation(DG)and energy storage(ES).Hosting capacity evaluation is important for SDN plan ning with DG.DG and ES are usually invested by users or a third party,and they may form friendly microgrids(MGs)and operate independently.Traditional centralized dispatching meth od no longer suits for hosting capacity evaluation of SDN.A quick hosting capacity evaluation method based on distributed optimal dispatching is proposed.Firstly,a multi-objective DG hosting capacity evaluation model is established,and the host ing capacity for DG is determined by the optimal DG planning schemes.The steady-state security region method is applied to speed up the solving process of the DG hosting capacity evalua tion model.Then,the optimal dispatching models are estab lished for MG and SDN respectively to realize the operating simulation.Under the distributed dispatching strategy,the dual-side optimal operation of SDN-MGs can be realized by several iterations of power exchange requirement.Finally,an SDN with four MGs is conducted considering multiple flexible resources.It shows that the DG hosting capacity of SDN oversteps the sum of the maximum active power demand and the rated branch capacity.Besides,the annual DG electricity oversteps the maximum active power demand value.