Based on the principle of life cycle assessment, CO2 and SO2 emission of Imperial Smelting Process in a certain zinc-lead smelter was analyzed by life cycle inventory method. According to the system expansion and subs...Based on the principle of life cycle assessment, CO2 and SO2 emission of Imperial Smelting Process in a certain zinc-lead smelter was analyzed by life cycle inventory method. According to the system expansion and substitution method, the environmental impacts of co-products were allocated among the main products of zinc, lead and sulfuric acid. The related impacts were assessed by use of Global Warming Potential (GWP) and Acidification Potential (ACP). The results show that the GWP index from 1998 to 2000 is 11.53, 11.65, 10.93 tCO2-eq/tZn respectively, the ACP index decreases from 14.88 kgSO2-eq/tZn in 1998 to 10.99 kgSO2-eq/tZn in 2000. Power and electricity generation, followed by smelting and zinc distillation, are mainly responsible for GWP. Sintering individually affects ACP. Reduction in greenhouse gas emissions of the ISP may come from energy conservation measures rather than from technological developments. And recycling more secondary Pb and Zn materials effectively treated by ISP, and reducing the amount of primary metal are the main ways to put SO2 emission under control.展开更多
As'China’s hometown of nonferrous metals',Chifeng City is the biggest concentration zone in Inner Mongolia’s nonferrous metals industry.Copper resources accounts for 17% of the whole region,lead resource acc...As'China’s hometown of nonferrous metals',Chifeng City is the biggest concentration zone in Inner Mongolia’s nonferrous metals industry.Copper resources accounts for 17% of the whole region,lead resource accounts for 35%,zinc resource accounts for 30%,tungsten resource accounts for 42%,tin resource accounts for 88%,molybdenum resource accounts for 15%,gold resource accounts展开更多
The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of c...The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates.Herein,the commercial powdery pyrite or anthracite is replaced with pyrite-anthracite pellets as the reductants to remove a large amount of Fe_(3)O_(4)particles in the molten slag,resulting in a deep fracture in the Fe_(3)O_(4)-wrapped copper microstructure and the full exposure of the copper matte cores.When 1wt%composite pellet is used as the reductant,the copper matte droplets are enlarged greatly from 25μm to a size observable by the naked eye,with the copper content being enriched remarkably from 1.2wt%to 4.5wt%.Density functional theory calculation results imply that the formation of the Fe_(3)O_(4)-wrapped copper structure is due to the preferential adhesion of Cu_(2)S on the Fe_(3)O_(4)particles.X-ray photoelectron spectroscopy,Fourier transform infrared spectrometer(FTIR),and Raman spectroscopy results all reveal that the high-efficiency conver-sion of Fe_(3)O_(4)to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure.As a consequence,the settling of copper matte droplets is enhanced due to the lowered slag viscosity,contributing to the high efficiency of copper-slag separation for copper recovery.The results provide new insights into the enhanced in-situ enrichment of copper from mol-ten slag.展开更多
A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in th...A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.展开更多
As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing an...As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing and metallurgical properties of CCB,this study focused on the application of CCB to blast furnace ironmaking and newly-developed shaft furnace smelting reduction processes.Firstly,the metallurgical properties of CCB are experimentally tested and compared with the common iron-bearing burdens.Then,the effects of charging CCB on blast furnace operation are numerically analyzed by means of multi-fluid blast furnace model,and the flowchart and pilot test of CCB-Shaft furnace smelting reduction process are briefly introduced.展开更多
A novel method,bath smelting process,was developed to treat molybdenite concentrate aiming at the existing problems of traditional process.To understand the dissolving behavior of MoS2 in white matte,the binary phase ...A novel method,bath smelting process,was developed to treat molybdenite concentrate aiming at the existing problems of traditional process.To understand the dissolving behavior of MoS2 in white matte,the binary phase diagram of Cu2S-Mo2S was measured by the cooling curve method.The result shows that this system is a simple binary eutectic with a eutectic temperature of(1117.0±3.0)℃ and a eutectic composition of(1.70±0.20)% MoS2 in mass fraction.When the MoS2 addition exceeds 4.48%,MoS2 and Cu2S can form the ternary compound containing CuMo2S3 or Cu2Mo6S8.In the temperature range of copper smelting,1200-1300℃,molybdenite can dissolve in the cuprous sulfide.At 1200℃,the solubility of molybdenite can reach 14.8%.展开更多
Vapor pressure of lead and lead chlorides from FeOT?CaO?SiO2?Al2O3 slag system was measured by using Knudsen effusion method. The results suggest that the vapor pressures of lead and lead chlorides increase with in...Vapor pressure of lead and lead chlorides from FeOT?CaO?SiO2?Al2O3 slag system was measured by using Knudsen effusion method. The results suggest that the vapor pressures of lead and lead chlorides increase with increasing temperature. For the slag systems without chlorine, the logarithm of vapor pressure (lnp) shows highly linear dependency on the reciprocal of temperature (1/T), and higher vapor pressure is observed in the condition where more metallic lead vapor is formed. In this case, the vapor pressure of lead increases with increasing slag basicity (w(CaO)/w(SiO2)), increasing FeO content andw(Fe2+)/w(Fe3+) ratio. For the case of slag system with chlorine addition, the total pressures of PbCl2 and PbCl increase with decreasing basicity and FeO content of slag.展开更多
Vaporization behavior (1163-1463 K) of lead in the slag system of FeO-CaO-SiO2-Al2O3 with CaC% was examined. A thermodynamic estimation with the principle of Gibbs free energy minimization showed that the major vapo...Vaporization behavior (1163-1463 K) of lead in the slag system of FeO-CaO-SiO2-Al2O3 with CaC% was examined. A thermodynamic estimation with the principle of Gibbs free energy minimization showed that the major vapor species from the sample of the FeO-CaO-SiO2-Al2O3 system+PbO+CaCl2 were metallic Pb, PbCl, PbCl2, and FeCl2, at the experimental temperature range. The experimental results show that the mole ratio of vaporized Cl in lead chlorides to vaporized Pb, simply expressed as Cl/Pb decreases with increasing temperature. The larger Cl/Pb means a larger ratio of gaseous PbCl2, since metallic Pb and PbCl vapors are formed in a similar reduction atmosphere. The evaporation is initially rapid and becomes steady after holding for 10 min. Gaseous PbCl2 is mainly formed during the heating period, and at the holding stage, it reacts with FeO to produce gaseous FeCl2 With regard to slag composition, FeO content and basicity significantly affect the evaporation of lead. High FeO content and high basicity promotes the formation of metallic Pb and PbCI, whereas, it prohibits PbCl2 evaporation.展开更多
文摘Based on the principle of life cycle assessment, CO2 and SO2 emission of Imperial Smelting Process in a certain zinc-lead smelter was analyzed by life cycle inventory method. According to the system expansion and substitution method, the environmental impacts of co-products were allocated among the main products of zinc, lead and sulfuric acid. The related impacts were assessed by use of Global Warming Potential (GWP) and Acidification Potential (ACP). The results show that the GWP index from 1998 to 2000 is 11.53, 11.65, 10.93 tCO2-eq/tZn respectively, the ACP index decreases from 14.88 kgSO2-eq/tZn in 1998 to 10.99 kgSO2-eq/tZn in 2000. Power and electricity generation, followed by smelting and zinc distillation, are mainly responsible for GWP. Sintering individually affects ACP. Reduction in greenhouse gas emissions of the ISP may come from energy conservation measures rather than from technological developments. And recycling more secondary Pb and Zn materials effectively treated by ISP, and reducing the amount of primary metal are the main ways to put SO2 emission under control.
文摘As'China’s hometown of nonferrous metals',Chifeng City is the biggest concentration zone in Inner Mongolia’s nonferrous metals industry.Copper resources accounts for 17% of the whole region,lead resource accounts for 35%,zinc resource accounts for 30%,tungsten resource accounts for 42%,tin resource accounts for 88%,molybdenum resource accounts for 15%,gold resource accounts
基金supported by the National Natural Science Foundation of China(No.52274349)the National Key Basic Research and Development Program of China(No.2022YFC3900801)+1 种基金the Fujian Province University-Industry Cooperation Research Program,China(No.2023H6007)the Fujian Province Natural Science Foundation,China(No.2023J05024).
文摘The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates.Herein,the commercial powdery pyrite or anthracite is replaced with pyrite-anthracite pellets as the reductants to remove a large amount of Fe_(3)O_(4)particles in the molten slag,resulting in a deep fracture in the Fe_(3)O_(4)-wrapped copper microstructure and the full exposure of the copper matte cores.When 1wt%composite pellet is used as the reductant,the copper matte droplets are enlarged greatly from 25μm to a size observable by the naked eye,with the copper content being enriched remarkably from 1.2wt%to 4.5wt%.Density functional theory calculation results imply that the formation of the Fe_(3)O_(4)-wrapped copper structure is due to the preferential adhesion of Cu_(2)S on the Fe_(3)O_(4)particles.X-ray photoelectron spectroscopy,Fourier transform infrared spectrometer(FTIR),and Raman spectroscopy results all reveal that the high-efficiency conver-sion of Fe_(3)O_(4)to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure.As a consequence,the settling of copper matte droplets is enhanced due to the lowered slag viscosity,contributing to the high efficiency of copper-slag separation for copper recovery.The results provide new insights into the enhanced in-situ enrichment of copper from mol-ten slag.
基金funded by Jinguan Copper of Tongling Non-ferrous Metals Group Co., Ltd.
文摘A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.
文摘As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing and metallurgical properties of CCB,this study focused on the application of CCB to blast furnace ironmaking and newly-developed shaft furnace smelting reduction processes.Firstly,the metallurgical properties of CCB are experimentally tested and compared with the common iron-bearing burdens.Then,the effects of charging CCB on blast furnace operation are numerically analyzed by means of multi-fluid blast furnace model,and the flowchart and pilot test of CCB-Shaft furnace smelting reduction process are briefly introduced.
基金Project(50974137)supported by the National Natural Science Foundation of China
文摘A novel method,bath smelting process,was developed to treat molybdenite concentrate aiming at the existing problems of traditional process.To understand the dissolving behavior of MoS2 in white matte,the binary phase diagram of Cu2S-Mo2S was measured by the cooling curve method.The result shows that this system is a simple binary eutectic with a eutectic temperature of(1117.0±3.0)℃ and a eutectic composition of(1.70±0.20)% MoS2 in mass fraction.When the MoS2 addition exceeds 4.48%,MoS2 and Cu2S can form the ternary compound containing CuMo2S3 or Cu2Mo6S8.In the temperature range of copper smelting,1200-1300℃,molybdenite can dissolve in the cuprous sulfide.At 1200℃,the solubility of molybdenite can reach 14.8%.
基金Project supported by the Japan Oil,Gas and Metals National Corporation(JOGMEC)Project(51474021)supported by the National Natural Science Foundation of China
文摘Vapor pressure of lead and lead chlorides from FeOT?CaO?SiO2?Al2O3 slag system was measured by using Knudsen effusion method. The results suggest that the vapor pressures of lead and lead chlorides increase with increasing temperature. For the slag systems without chlorine, the logarithm of vapor pressure (lnp) shows highly linear dependency on the reciprocal of temperature (1/T), and higher vapor pressure is observed in the condition where more metallic lead vapor is formed. In this case, the vapor pressure of lead increases with increasing slag basicity (w(CaO)/w(SiO2)), increasing FeO content andw(Fe2+)/w(Fe3+) ratio. For the case of slag system with chlorine addition, the total pressures of PbCl2 and PbCl increase with decreasing basicity and FeO content of slag.
基金supported by the National Natural Science Foundation of China (No.50704004)
文摘Vaporization behavior (1163-1463 K) of lead in the slag system of FeO-CaO-SiO2-Al2O3 with CaC% was examined. A thermodynamic estimation with the principle of Gibbs free energy minimization showed that the major vapor species from the sample of the FeO-CaO-SiO2-Al2O3 system+PbO+CaCl2 were metallic Pb, PbCl, PbCl2, and FeCl2, at the experimental temperature range. The experimental results show that the mole ratio of vaporized Cl in lead chlorides to vaporized Pb, simply expressed as Cl/Pb decreases with increasing temperature. The larger Cl/Pb means a larger ratio of gaseous PbCl2, since metallic Pb and PbCl vapors are formed in a similar reduction atmosphere. The evaporation is initially rapid and becomes steady after holding for 10 min. Gaseous PbCl2 is mainly formed during the heating period, and at the holding stage, it reacts with FeO to produce gaseous FeCl2 With regard to slag composition, FeO content and basicity significantly affect the evaporation of lead. High FeO content and high basicity promotes the formation of metallic Pb and PbCI, whereas, it prohibits PbCl2 evaporation.