The present paper proves that if(x) ∈ C[0,1], changes its sign exactly l times at 0 〈 y1〈 y2 … 〈 y1 〈 1 in (0, 1), then there exists a pn(x) ∈ Пn(+), such that |f(x)- p(x)/pn(x)|≤ Cωφ(f,n^...The present paper proves that if(x) ∈ C[0,1], changes its sign exactly l times at 0 〈 y1〈 y2 … 〈 y1 〈 1 in (0, 1), then there exists a pn(x) ∈ Пn(+), such that |f(x)- p(x)/pn(x)|≤ Cωφ(f,n^(-1/2)), where ρ(x) is defined by ρ(x)={^lПi=1(x-yi),if f (x)≥0 for x ∈(y1,1), {-^lПi=1(x-yi),if f (x)〈0 for x ∈(y1,1), which improves and generalizes the result of .展开更多
基金Supported in part by National Natural Science Foundations of China under the grant number 10471130
文摘The present paper proves that if(x) ∈ C[0,1], changes its sign exactly l times at 0 〈 y1〈 y2 … 〈 y1 〈 1 in (0, 1), then there exists a pn(x) ∈ Пn(+), such that |f(x)- p(x)/pn(x)|≤ Cωφ(f,n^(-1/2)), where ρ(x) is defined by ρ(x)={^lПi=1(x-yi),if f (x)≥0 for x ∈(y1,1), {-^lПi=1(x-yi),if f (x)〈0 for x ∈(y1,1), which improves and generalizes the result of .