A smooth C^1 interpolation for two-dimensional contact problems using parametric curve technique was developed and implemented.The parametric curve can ensure C^1 continuity of the contact surfaces and provide a uniqu...A smooth C^1 interpolation for two-dimensional contact problems using parametric curve technique was developed and implemented.The parametric curve can ensure C^1 continuity of the contact surfaces and provide a unique surface normal vector.Some numerical examples were used to illustrate the advantages of the newly developed representation of contact surface. The results reveal a significant improvement in the prediction of contact stresses and contact area.The predicted contact stresses are less sensitive to the mismatch in meshes of the different contacting bodies.展开更多
Extending the results of [4] in the univariate case, in this paper we prove that the bivariate interpolation polynomials of Hermite-Fejér based on the Chebyshev nodes of the first kind, those of Lagrange based o...Extending the results of [4] in the univariate case, in this paper we prove that the bivariate interpolation polynomials of Hermite-Fejér based on the Chebyshev nodes of the first kind, those of Lagrange based on the Chebyshev nodes of second kind and ±1, and those of bivariate Shepard operators, have the property of partial preservation of global smoothness, with respect to various bivariate moduli of continuity.展开更多
Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the challenge of the selection of the proper function class with polynomial smooth techniques applied to support v...Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the challenge of the selection of the proper function class with polynomial smooth techniques applied to support vector regression models, this study takes cubic spline interpolation to generate a new polynomial smooth function |×|ε^ 2, in g-insensitive support vector regression. Theoretical analysis shows that Sε^2 -function is better than pε^2 -function in properties, and the approximation accuracy of the proposed smoothing function is two order higher than that of classical pε^2 -function. The experimental data shows the efficiency of the new approach.展开更多
In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
Abstract In this paper, by using the explicit expression of the kernel of the cubic spline interpolation, the optimal error bounds for the cubic spline interpolation of lower soomth functions are obtained.
To achieve refined temperature grid data with high accuracy and high spatial resolution,hourly temperature grid dataset with spatial resolution of 1 km in Anhui Province from January to December in 2016 was establishe...To achieve refined temperature grid data with high accuracy and high spatial resolution,hourly temperature grid dataset with spatial resolution of 1 km in Anhui Province from January to December in 2016 was established using the ANUSPLIN thin plate spline algorithm,which meets the needs of climate change research and meteorological disaster risk assessment. And the interpolation error was analyzed. The results show that the interpolated values of hourly temperature by ANUSPLIN are close to the observed values in 2016. The error is generally below 1. 5 ℃,and the root mean square error is 0. 937 6 ℃. On monthly scale,the interpolated values of hourly temperature by ANUSPLIN are also close to the observed values.In October,November,June and May,the interpolation accuracy is the highest,and the proportion of absolute error of hourly temperature lower than 2 ℃ is up to 99%,97. 4%,98. 1% and 97. 4% respectively. In February,March,August and December,the interpolation accuracy is the lowest,and the proportion of absolute error higher than 2 ℃ is 8. 1%,5. 3%,4. 1% and 4. 2% respectively. Due to the effect of complex topography in Anhui,the interpolation accuracy is the lowest in the mountainous areas of southern and western Anhui,and the interpolation error in these regions even exceeds 1. 5 ℃ annually and 1. 8 ℃ monthly.展开更多
A number of conventional interpolation techniques have been proposed. However, it seems that there do not exist good criteria for the design of optimal linear interpolators. Also, such an interpolator can hardly provi...A number of conventional interpolation techniques have been proposed. However, it seems that there do not exist good criteria for the design of optimal linear interpolators. Also, such an interpolator can hardly provide a satisfactory solution for interpolating noisy images. In this paper, the novelty of this research is that a universal approach is proposed to design an image interpolator with any one image smoothing filter, thereby not only interpolating a down-sampled image but also preserving the characteristics of the performing filtering.展开更多
Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed th...Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification.展开更多
Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be...Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be recognized as data living on mani- fold surfaces. So interpolation and approximation for these data are of general interest. This paper presents two approaches for mani- fold data interpolation and approximation through the properties of Laplace-Beltrami operator (Laplace operator defined on a mani- fold surface). The first one is to use Laplace operator minimizing the membrane energy of a scalar function defined on a manifold. The second one is to use bi-Laplace operator minimizing the thin plate energy of a scalar function defined on a manifold. These two approaches can process data living on high genus meshed surfaces. The approach based on Laplace operator is more suitable for manifold data approximation and can be applied manifold data smoothing, while the one based on bi-Laplace operator is more suit- able for manifold data interpolation and can be applied image extremal envelope computation. All the application examples demon- strate that our procedures are robust and efficient.展开更多
We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, ...We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.展开更多
文摘A smooth C^1 interpolation for two-dimensional contact problems using parametric curve technique was developed and implemented.The parametric curve can ensure C^1 continuity of the contact surfaces and provide a unique surface normal vector.Some numerical examples were used to illustrate the advantages of the newly developed representation of contact surface. The results reveal a significant improvement in the prediction of contact stresses and contact area.The predicted contact stresses are less sensitive to the mismatch in meshes of the different contacting bodies.
文摘Extending the results of [4] in the univariate case, in this paper we prove that the bivariate interpolation polynomials of Hermite-Fejér based on the Chebyshev nodes of the first kind, those of Lagrange based on the Chebyshev nodes of second kind and ±1, and those of bivariate Shepard operators, have the property of partial preservation of global smoothness, with respect to various bivariate moduli of continuity.
基金Supported by Guangdong Natural Science Foundation Project(No.S2011010002144)Province and Ministry Production and Research Projects(No.2012B091100497,2012B091100191,2012B091100383)+1 种基金Guangdong Province Enterprise Laboratory Project(No.2011A091000046)Guangdong Province Science and Technology Major Project(No.2012A080103010)
文摘Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the challenge of the selection of the proper function class with polynomial smooth techniques applied to support vector regression models, this study takes cubic spline interpolation to generate a new polynomial smooth function |×|ε^ 2, in g-insensitive support vector regression. Theoretical analysis shows that Sε^2 -function is better than pε^2 -function in properties, and the approximation accuracy of the proposed smoothing function is two order higher than that of classical pε^2 -function. The experimental data shows the efficiency of the new approach.
文摘In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
文摘Abstract In this paper, by using the explicit expression of the kernel of the cubic spline interpolation, the optimal error bounds for the cubic spline interpolation of lower soomth functions are obtained.
基金Support by New Technology Integration Project of Anhui Meteorological Bureau(AHXJ201704)
文摘To achieve refined temperature grid data with high accuracy and high spatial resolution,hourly temperature grid dataset with spatial resolution of 1 km in Anhui Province from January to December in 2016 was established using the ANUSPLIN thin plate spline algorithm,which meets the needs of climate change research and meteorological disaster risk assessment. And the interpolation error was analyzed. The results show that the interpolated values of hourly temperature by ANUSPLIN are close to the observed values in 2016. The error is generally below 1. 5 ℃,and the root mean square error is 0. 937 6 ℃. On monthly scale,the interpolated values of hourly temperature by ANUSPLIN are also close to the observed values.In October,November,June and May,the interpolation accuracy is the highest,and the proportion of absolute error of hourly temperature lower than 2 ℃ is up to 99%,97. 4%,98. 1% and 97. 4% respectively. In February,March,August and December,the interpolation accuracy is the lowest,and the proportion of absolute error higher than 2 ℃ is 8. 1%,5. 3%,4. 1% and 4. 2% respectively. Due to the effect of complex topography in Anhui,the interpolation accuracy is the lowest in the mountainous areas of southern and western Anhui,and the interpolation error in these regions even exceeds 1. 5 ℃ annually and 1. 8 ℃ monthly.
文摘A number of conventional interpolation techniques have been proposed. However, it seems that there do not exist good criteria for the design of optimal linear interpolators. Also, such an interpolator can hardly provide a satisfactory solution for interpolating noisy images. In this paper, the novelty of this research is that a universal approach is proposed to design an image interpolator with any one image smoothing filter, thereby not only interpolating a down-sampled image but also preserving the characteristics of the performing filtering.
基金supported by the National Natural Science Foundation of China(50474053,50475134 and 50675081)the 863 project (2007AA042142)
文摘Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification.
基金Supported by National Natural Science Foundation of China (No.61202261,No.61173102)NSFC Guangdong Joint Fund(No.U0935004)Opening Foundation of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education of China(No.93K172012K02)
文摘Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be recognized as data living on mani- fold surfaces. So interpolation and approximation for these data are of general interest. This paper presents two approaches for mani- fold data interpolation and approximation through the properties of Laplace-Beltrami operator (Laplace operator defined on a mani- fold surface). The first one is to use Laplace operator minimizing the membrane energy of a scalar function defined on a manifold. The second one is to use bi-Laplace operator minimizing the thin plate energy of a scalar function defined on a manifold. These two approaches can process data living on high genus meshed surfaces. The approach based on Laplace operator is more suitable for manifold data approximation and can be applied manifold data smoothing, while the one based on bi-Laplace operator is more suit- able for manifold data interpolation and can be applied image extremal envelope computation. All the application examples demon- strate that our procedures are robust and efficient.
基金Supported by the National Nature Science Foundation.
文摘We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.