期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于修正近似双曲正切函数的平滑l_0范数算法 被引量:6
1
作者 陈金立 李伟 +2 位作者 朱筱嵘 陈宣 李家强 《计算机工程与设计》 北大核心 2018年第12期3717-3721,3754,共6页
针对SL0算法中高斯函数对l_0范数的逼近程度较差以及在算法迭代过程中存在"锯齿效应"的问题,提出一种基于修正近似双曲正切函数的平滑l_0范数算法。采用逼近性能更优的修正近似双曲正切函数近似l_0范数,建立基于此函数的稀疏... 针对SL0算法中高斯函数对l_0范数的逼近程度较差以及在算法迭代过程中存在"锯齿效应"的问题,提出一种基于修正近似双曲正切函数的平滑l_0范数算法。采用逼近性能更优的修正近似双曲正切函数近似l_0范数,建立基于此函数的稀疏问题模型,利用牛顿法对其进行求解,能够以较高的精度重构出稀疏信号。仿真结果表明,相比于SL0算法、NSL0(newton smoothed l_0norm,NSL0)算法以及ASL0(approximate smoothed l_0norm,ASL0)算法,所提算法能获得更优的重构性能。 展开更多
关键词 压缩感知 稀疏信号重构 平滑l0范数算法 修正近似双曲正切函数 牛顿法
下载PDF
Block Compressed Sensing Image Reconstruction Based on SL0 Algorithm 被引量:1
2
作者 Juan Zhao Xia Bai Jieqiong Xiao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第3期357-366,共10页
By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is dev... By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is developed to use regularized SL0(ReSL0)in a reconstruction process to deal with noisy situations.The study shows that the proposed BCS-SL0 takes less execution time than the classical BCS with smoothed projected Landweber(BCS-SPL)algorithm in low measurement ratio,while achieving comparable reconstruction quality,and improving the blocking artifacts especially.The experiment results also verify that the reconstruction performance of BCS-ReSL0 is better than that of the BCSSPL in terms of noise tolerance at low measurement ratio. 展开更多
关键词 compressed sensing (CS) BlOCK smoothed l0 norm (slo
下载PDF
基于截断修正平滑l_0范数的MIMO雷达目标参数估计 被引量:2
3
作者 陈金立 李伟 +1 位作者 唐彬彬 李家强 《电讯技术》 北大核心 2017年第9期998-1003,共6页
在多输入多输出(MIMO)雷达中,针对平滑l0范数(SL0)因感知矩阵的病态性而导致其失效的问题,提出了一种基于截断修正SL0的MIMO雷达目标参数估计方法。该方法在对MIMO雷达感知矩阵进行截断奇异值分解(TSVD)处理的基础上,将保留的奇异值以... 在多输入多输出(MIMO)雷达中,针对平滑l0范数(SL0)因感知矩阵的病态性而导致其失效的问题,提出了一种基于截断修正SL0的MIMO雷达目标参数估计方法。该方法在对MIMO雷达感知矩阵进行截断奇异值分解(TSVD)处理的基础上,将保留的奇异值以均值为截断门限,分成较大和较小的两部分,分别采用不同的修正准则进行修正;然后经奇异值分解(SVD)反变换获得非病态感知矩阵,利用该非病态感知矩阵通过SL0算法对MIMO雷达目标参数进行估计,从而显著提高了MIMO雷达目标参数估计的精度和速度。仿真结果验证了该方法的有效性。 展开更多
关键词 MIMO雷达 目标参数估计 平滑10范数算法 病态矩阵 截断修正奇异值分解
下载PDF
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
4
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse Bayesian learning fast Bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
下载PDF
A nonlocal gradient concentration method for image smoothing 被引量:2
5
作者 Qian Liu Caiming Zhang +1 位作者 Qiang Guo Yuanfeng Zhou 《Computational Visual Media》 2015年第3期197-209,共13页
It is challenging to consistently smooth natural images, yet smoothing results determine the quality of a broad range of applications in computer vision. To achieve consistent smoothing, we propose a novel optimizatio... It is challenging to consistently smooth natural images, yet smoothing results determine the quality of a broad range of applications in computer vision. To achieve consistent smoothing, we propose a novel optimization model making use of the redundancy of natural images, by defining a nonlocal concentration regularization term on the gradient. This nonlocal constraint is carefully combined with a gradientsparsity constraint, allowing details throughout the whole image to be removed automatically in a datadriven manner. As variations in gradient between similar patches can be suppressed effectively, the new model has excellent edge preserving, detail removal,and visual consistency properties. Comparisons with state-of-the-art smoothing methods demonstrate the effectiveness of the new method. Several applications,including edge manipulation, image abstraction,detail magnification, and image resizing, show the applicability of the new method. 展开更多
关键词 image smoothing nonlocal similarity l0 norm edge detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部