Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ...Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.展开更多
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu...The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.展开更多
Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a ...Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research.展开更多
The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numeric...The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.展开更多
Free-surface flows, especially those associated with fluid-structure interactions(FSIs), pose challenging problems in numerical simulations. The authors of this work recently developed a smoothed particle element meth...Free-surface flows, especially those associated with fluid-structure interactions(FSIs), pose challenging problems in numerical simulations. The authors of this work recently developed a smoothed particle element method(SPEM) to simulate FSIs. In this method, both the fluid and solid regions are initially modeled using a smoothed finite element method(S-FEM) in a Lagrangian frame, whereas the fluid regions undergoing large deformations are adaptively converted into particles and modeled with an improved smoothed particle hydrodynamics(SPH) method. This approach greatly improves computational accuracy and efficiency because of the advantages of the S-FEM in efficiently treating solid/fluid regions showing small deformations and the SPH method in effectively modeling moving interfaces. In this work, we further enhance the efficiency of the SPEM while effectively capturing local fluid information by introducing a multi-resolution technique to the SPEM and developing an effective approach to treat multi-resolution element-particle interfaces. Various numerical examples demonstrate that the multiresolution SPEM can significantly reduce the computational cost relative to the original version with a constant resolution.Moreover, the novel approach is effective in modeling various incompressible flow problems involving FSIs.展开更多
The 2017 SPHERIC Beijing International Workshop(or SPHERIC Beijing 2017) was held at Peking University, in China,on October 17-20, 2017. This is the first time that the SPHERIC Workshop was held out of Europe. We ar...The 2017 SPHERIC Beijing International Workshop(or SPHERIC Beijing 2017) was held at Peking University, in China,on October 17-20, 2017. This is the first time that the SPHERIC Workshop was held out of Europe. We are delighted to present nine contributions in this Special Column of the Journal of Hydrodynamics, and take this opportunity to announce that the 13 th SPHERIC Workshop(or SPHERIC 2018) will be held in Galway, Ireland in 2018 by the National University of Ireland, and the SPHERIC International Workshop in Harbin, China in 2019 by the Harbin Engineering University.展开更多
针对以往有限元模型中弹丸数量较少且为规则阵列排布的缺陷,采用光滑粒子流体动力学法(Smoothed particle hydrodynamics,SPH)与有限元法(Finite element method,FEM)相结合的方法,对喷丸过程进行数值模拟;使用MATLAB对弹丸空间位置坐...针对以往有限元模型中弹丸数量较少且为规则阵列排布的缺陷,采用光滑粒子流体动力学法(Smoothed particle hydrodynamics,SPH)与有限元法(Finite element method,FEM)相结合的方法,对喷丸过程进行数值模拟;使用MATLAB对弹丸空间位置坐标进行随机化处理,形成了大量丸粒冲击工件表面的随机喷丸仿真模型。通过分析确定了喷丸饱和时间,研究了喷射角度、弹丸流量对残余应力场的影响。结果表明:在喷丸参数一定的条件下,存在相应的饱和喷丸时间;研究喷丸参数对残余应力的影响时,应在喷丸达到饱和时间之后提取残余应力值;喷射角度增大,残余压应力增大;开始时弹丸流量增大,残余压应力会有所增大,但当其达到饱和值后,残余压应力不再变化。展开更多
基金Project supported by the National Natural Science Foundation of China(No.52109068)the Water Conservancy Technology Project of Jiangsu Province of China(No.2022060)。
文摘Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.
基金Project (2009Z001) supported by the Important Item in Guangdong-Hong Kong Key Project, ChinaProject (2010B090400297) supported by the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China
文摘The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.
基金Supported by the National Natural Science Foundation of China under Grant No. 10572041 and 50779008
文摘Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research.
基金Supported by National Natural Science Foundation of China(No.50638030 and 50525825)National Science and Technology Support Program(No.2006BAJ13B02)
文摘The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.
基金supported by the National Numerical Wind Tunnel Project (Grant No. NNW2019ZT2-B02)the National Natural Science Foundation of China (Grant Nos. 12032002,51779003,and 11902005)the SinoGerman Mobility Programme (Grant No. M-0210)。
文摘Free-surface flows, especially those associated with fluid-structure interactions(FSIs), pose challenging problems in numerical simulations. The authors of this work recently developed a smoothed particle element method(SPEM) to simulate FSIs. In this method, both the fluid and solid regions are initially modeled using a smoothed finite element method(S-FEM) in a Lagrangian frame, whereas the fluid regions undergoing large deformations are adaptively converted into particles and modeled with an improved smoothed particle hydrodynamics(SPH) method. This approach greatly improves computational accuracy and efficiency because of the advantages of the S-FEM in efficiently treating solid/fluid regions showing small deformations and the SPH method in effectively modeling moving interfaces. In this work, we further enhance the efficiency of the SPEM while effectively capturing local fluid information by introducing a multi-resolution technique to the SPEM and developing an effective approach to treat multi-resolution element-particle interfaces. Various numerical examples demonstrate that the multiresolution SPEM can significantly reduce the computational cost relative to the original version with a constant resolution.Moreover, the novel approach is effective in modeling various incompressible flow problems involving FSIs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11742012,51779003 and U1530110)
文摘The 2017 SPHERIC Beijing International Workshop(or SPHERIC Beijing 2017) was held at Peking University, in China,on October 17-20, 2017. This is the first time that the SPHERIC Workshop was held out of Europe. We are delighted to present nine contributions in this Special Column of the Journal of Hydrodynamics, and take this opportunity to announce that the 13 th SPHERIC Workshop(or SPHERIC 2018) will be held in Galway, Ireland in 2018 by the National University of Ireland, and the SPHERIC International Workshop in Harbin, China in 2019 by the Harbin Engineering University.
文摘针对以往有限元模型中弹丸数量较少且为规则阵列排布的缺陷,采用光滑粒子流体动力学法(Smoothed particle hydrodynamics,SPH)与有限元法(Finite element method,FEM)相结合的方法,对喷丸过程进行数值模拟;使用MATLAB对弹丸空间位置坐标进行随机化处理,形成了大量丸粒冲击工件表面的随机喷丸仿真模型。通过分析确定了喷丸饱和时间,研究了喷射角度、弹丸流量对残余应力场的影响。结果表明:在喷丸参数一定的条件下,存在相应的饱和喷丸时间;研究喷丸参数对残余应力的影响时,应在喷丸达到饱和时间之后提取残余应力值;喷射角度增大,残余压应力增大;开始时弹丸流量增大,残余压应力会有所增大,但当其达到饱和值后,残余压应力不再变化。