To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs base...To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance.展开更多
With the rapid increase of distributed photovoltaic(PV) power integrating into the distribution network(DN), the critical issues such as PV power curtailment and low equipment utilization rate have been caused by PV p...With the rapid increase of distributed photovoltaic(PV) power integrating into the distribution network(DN), the critical issues such as PV power curtailment and low equipment utilization rate have been caused by PV power fluctuations. DN has less controllable equipment to manage the PV power fluctuation. To smooth the power fluctuations and further improve the utilization of PV, the regulation ability from the demandside needs to be excavated. This study presents a continuous control method of the feeder load power in a DN based on the voltage regulation to respond to the rapid fluctuation of the PV power output. PV power fluctuations will be directly reflected in the point of common coupling(PCC), and the power fluctuation rate of PCCs is an important standard of PV curtailment.Thus, a demand-side management strategy based on model predictive control(MPC) to mitigate the PCC power fluctuation is proposed. In pre-scheduling, the intraday optimization model is established to solve the reference power of PCC. In real-time control, the pre-scheduling results and MPC are used for the rolling optimization to control the feeder load demand. Finally,the data from the field measurements in Guangzhou, China are used to verify the effectiveness of the proposed strategy in smoothing fluctuations of the distributed PV power.展开更多
分布式光伏在交流侧公共连接点(point of common coupling,PCC)汇流的功率有较大的随机性与波动性,影响电网的稳定运行。为此,提出了基于经验小波变换(empirical wavelet transform,EWT)的分布式光储PCC功率自适应平抑方法。首先,针对...分布式光伏在交流侧公共连接点(point of common coupling,PCC)汇流的功率有较大的随机性与波动性,影响电网的稳定运行。为此,提出了基于经验小波变换(empirical wavelet transform,EWT)的分布式光储PCC功率自适应平抑方法。首先,针对混合储能(hybrid energy storage system,HESS)与分布式光伏接入PCC的典型场景,在分析EWT自适应处理波形的特点后,结合功率波动率与储能元件的响应特性,对PCC的光伏原始汇流功率进行EWT分解与优化修正,实现HESS的功率初级分配。之后为避免HESS的荷电状态(state of charge,SOC)频繁越限,提出了一种主动功率补偿的SOC控制策略,通过主动改变储能的参考信号使其SOC在安全范围内工作。结合实际数据的仿真验证表明,该平抑方法能够自适应地实现光伏出力的合理分解与功率分配,在延长储能使用寿命的同时有效满足并网功率波动的要求,为平抑光伏输出功率波动提供了新思路。展开更多
针对混合储能平抑风电功率波动时储能系统成本过高的问题,提出一种基于卡尔曼滤波和模型预测控制的风电波动平抑控制策略。该方法基于风储联合发电系统,在满足风电平抑需求的基础上,通过预设截止频率以储能容量变化最小与功率波动最低...针对混合储能平抑风电功率波动时储能系统成本过高的问题,提出一种基于卡尔曼滤波和模型预测控制的风电波动平抑控制策略。该方法基于风储联合发电系统,在满足风电平抑需求的基础上,通过预设截止频率以储能容量变化最小与功率波动最低为多目标,利用遗传算法求解卡尔曼滤波自适应参数获得最优储能目标功率。为提高混合储能系统协调运行能力,考虑调节储能荷电状态(state of charge,SOC)通过模型预测控制实现计及电池运行寿命与超级电容SOC变化的动态功率分配。最后,结合实际风电功率数据进行仿真验证。结果表明,所提策略能够有效改善电池SOC、降低超级电容容量,符合储能平抑风电功率需求,能充分考虑两种储能设备的特性差异,提高功率分配的合理性,改善储能系统经济性。展开更多
针对电池储能(battery energy storage system,BESS)平抑风电波动过程中电池单元荷电状态(state of charge,SOC)均衡性较差且未考虑风储净收益的问题,提出了风电波动平抑下考虑SOC均衡及收益的BESS功率分配策略。首先,建立综合考虑售电...针对电池储能(battery energy storage system,BESS)平抑风电波动过程中电池单元荷电状态(state of charge,SOC)均衡性较差且未考虑风储净收益的问题,提出了风电波动平抑下考虑SOC均衡及收益的BESS功率分配策略。首先,建立综合考虑售电收益、弃风惩罚、缺电惩罚及BESS运行成本等多个因素的风电并网指令优化模型,以并网指令波动率、电池组SOC标准差等多个因素为约束条件,提出改进算术优化算法(improved arithmetic optimization algorithm,IAOA)求解该优化模型。然后,将BESS划分为两个电池组,设计了BESS双层功率分配方法(double-layer power allocation method,DPAM),上层将BESS充放电指令分配给两个电池组,下层根据最大充放电功率原则或新型SOC均衡原则将电池组充放电指令分配给各自的电池单元。最后,通过仿真对所提策略进行了验证。仿真结果表明:IAOA加快了寻优速度,提高了寻优精度;DPAM提升了电池组内电池单元SOC的均衡速度,改善了均衡程度;提出的功率分配策略进一步降低了风电并网波动率,同时提高了风储系统净收益。展开更多
为了平滑风电功率波动,针对现有的控制策略未考虑储能运行过程中多个目标之间的竞争冒险关系,基于合作博弈论提出了用于平滑风功率的多目标储能运行控制策略。模型预测控制(modelpredictivecontrol,MPC)中预测区间M的大小与储能运行策...为了平滑风电功率波动,针对现有的控制策略未考虑储能运行过程中多个目标之间的竞争冒险关系,基于合作博弈论提出了用于平滑风功率的多目标储能运行控制策略。模型预测控制(modelpredictivecontrol,MPC)中预测区间M的大小与储能运行策略有着密切联系。该研究以MPC中预测区间M为决策变量,探究其变化对风电平抑效果和储能控制策略的影响,并以此制定储能运行策略。首先建立了风-储联合发电系统模型,分析了储能运行过程中因M的改变导致目标函数间产生的合作博弈关系,其次改进了多目标哈里斯鹰算法(improved multi objective Harris hoptimizer,I-MOHHO)获取了沿所有目标均匀分布的Pareto最优前沿。最后在Pareto最优解集中选择一个M作为Pareto最优解嵌入到MPC中进一步滚动优化储能运行控制策略。结合储能运行成本的变化与传统控制策略对比分析,结果表明:1)M的改变对储能运行策略影响显著;2)考虑了合作博弈后的储能运行各项指标均得到了优化;3)基于多目标合作博弈的储能日运行成本降低了55.91%。展开更多
基金This study was supported by the National Key Research and Development Program of China(No.2018YFE0122200)National Natural Science Foundation of China(No.52077078)Fundamental Research Funds for the Central Universities(No.2020MS090).
文摘To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance.
基金supported by the National Natural Science Foundation of China (No. U2066601)。
文摘With the rapid increase of distributed photovoltaic(PV) power integrating into the distribution network(DN), the critical issues such as PV power curtailment and low equipment utilization rate have been caused by PV power fluctuations. DN has less controllable equipment to manage the PV power fluctuation. To smooth the power fluctuations and further improve the utilization of PV, the regulation ability from the demandside needs to be excavated. This study presents a continuous control method of the feeder load power in a DN based on the voltage regulation to respond to the rapid fluctuation of the PV power output. PV power fluctuations will be directly reflected in the point of common coupling(PCC), and the power fluctuation rate of PCCs is an important standard of PV curtailment.Thus, a demand-side management strategy based on model predictive control(MPC) to mitigate the PCC power fluctuation is proposed. In pre-scheduling, the intraday optimization model is established to solve the reference power of PCC. In real-time control, the pre-scheduling results and MPC are used for the rolling optimization to control the feeder load demand. Finally,the data from the field measurements in Guangzhou, China are used to verify the effectiveness of the proposed strategy in smoothing fluctuations of the distributed PV power.
文摘分布式光伏在交流侧公共连接点(point of common coupling,PCC)汇流的功率有较大的随机性与波动性,影响电网的稳定运行。为此,提出了基于经验小波变换(empirical wavelet transform,EWT)的分布式光储PCC功率自适应平抑方法。首先,针对混合储能(hybrid energy storage system,HESS)与分布式光伏接入PCC的典型场景,在分析EWT自适应处理波形的特点后,结合功率波动率与储能元件的响应特性,对PCC的光伏原始汇流功率进行EWT分解与优化修正,实现HESS的功率初级分配。之后为避免HESS的荷电状态(state of charge,SOC)频繁越限,提出了一种主动功率补偿的SOC控制策略,通过主动改变储能的参考信号使其SOC在安全范围内工作。结合实际数据的仿真验证表明,该平抑方法能够自适应地实现光伏出力的合理分解与功率分配,在延长储能使用寿命的同时有效满足并网功率波动的要求,为平抑光伏输出功率波动提供了新思路。
文摘针对混合储能平抑风电功率波动时储能系统成本过高的问题,提出一种基于卡尔曼滤波和模型预测控制的风电波动平抑控制策略。该方法基于风储联合发电系统,在满足风电平抑需求的基础上,通过预设截止频率以储能容量变化最小与功率波动最低为多目标,利用遗传算法求解卡尔曼滤波自适应参数获得最优储能目标功率。为提高混合储能系统协调运行能力,考虑调节储能荷电状态(state of charge,SOC)通过模型预测控制实现计及电池运行寿命与超级电容SOC变化的动态功率分配。最后,结合实际风电功率数据进行仿真验证。结果表明,所提策略能够有效改善电池SOC、降低超级电容容量,符合储能平抑风电功率需求,能充分考虑两种储能设备的特性差异,提高功率分配的合理性,改善储能系统经济性。
文摘针对电池储能(battery energy storage system,BESS)平抑风电波动过程中电池单元荷电状态(state of charge,SOC)均衡性较差且未考虑风储净收益的问题,提出了风电波动平抑下考虑SOC均衡及收益的BESS功率分配策略。首先,建立综合考虑售电收益、弃风惩罚、缺电惩罚及BESS运行成本等多个因素的风电并网指令优化模型,以并网指令波动率、电池组SOC标准差等多个因素为约束条件,提出改进算术优化算法(improved arithmetic optimization algorithm,IAOA)求解该优化模型。然后,将BESS划分为两个电池组,设计了BESS双层功率分配方法(double-layer power allocation method,DPAM),上层将BESS充放电指令分配给两个电池组,下层根据最大充放电功率原则或新型SOC均衡原则将电池组充放电指令分配给各自的电池单元。最后,通过仿真对所提策略进行了验证。仿真结果表明:IAOA加快了寻优速度,提高了寻优精度;DPAM提升了电池组内电池单元SOC的均衡速度,改善了均衡程度;提出的功率分配策略进一步降低了风电并网波动率,同时提高了风储系统净收益。
文摘储能系统(energy storage system,ESS)仅参与平抑风电功率波动为单一场景的控制策略,存在ESS频繁充放电以及不能有效解决负荷低谷时段风电消纳等问题。为此,提出了一种计及谷时段风电消纳的ESS平抑风电功率波动控制策略。首先,根据风电特性与负荷需求的时序关系,确定ESS在一个周期内的充电和放电区间段。其次,提出了分区间控制的ESS控制策略,在充电区间段以平抑风电功率向上波动为目标存储电量;在放电区间段以平抑风电功率向下波动为目标释放电量。最后,考虑ESS的实时荷电状态(state of charge,SOC)和风电消纳,提出了基于模糊控制的ESS充放电功率修正方法。以某风电场实际数据为例,在风储联合发电系统仿真平台上进行了测试,验证了所提运行策略的可行性和优越性。
文摘为了平滑风电功率波动,针对现有的控制策略未考虑储能运行过程中多个目标之间的竞争冒险关系,基于合作博弈论提出了用于平滑风功率的多目标储能运行控制策略。模型预测控制(modelpredictivecontrol,MPC)中预测区间M的大小与储能运行策略有着密切联系。该研究以MPC中预测区间M为决策变量,探究其变化对风电平抑效果和储能控制策略的影响,并以此制定储能运行策略。首先建立了风-储联合发电系统模型,分析了储能运行过程中因M的改变导致目标函数间产生的合作博弈关系,其次改进了多目标哈里斯鹰算法(improved multi objective Harris hoptimizer,I-MOHHO)获取了沿所有目标均匀分布的Pareto最优前沿。最后在Pareto最优解集中选择一个M作为Pareto最优解嵌入到MPC中进一步滚动优化储能运行控制策略。结合储能运行成本的变化与传统控制策略对比分析,结果表明:1)M的改变对储能运行策略影响显著;2)考虑了合作博弈后的储能运行各项指标均得到了优化;3)基于多目标合作博弈的储能日运行成本降低了55.91%。