Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the ...Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the mode of instability, snap_back or snap_through, was established; 2) analytical solution was given out for the double shear beam and the load_displacement diagram for monotonic loading was presented for a full process; and 3) the problem of the energy release induced by instability was discussed.展开更多
The static avalanche breakdown behavior of 4.5 kV high-voltage IGBT is studied by theory analysis and experiment. The avalanche breakdown behaviors of the 4.5 kV IGBTs with different backside structures are investigat...The static avalanche breakdown behavior of 4.5 kV high-voltage IGBT is studied by theory analysis and experiment. The avalanche breakdown behaviors of the 4.5 kV IGBTs with different backside structures are investigated and compared by using the curve tracer. The results show that the snap back behavior of the breakdown waveform is related to the bipolar PNP gain, which leads to the deterioration of the breakdown voltage. There are two ways to optimize the backside structure, one is increasing the implant dose of the N^+ buffer layer, the other is decreasing the implant dose of the P^+ collector layer. It is found that the optimized structure is effective in suppressing the snap back behavior and improving the breakdown characteristic of high voltage IGBT.展开更多
基金the EU project(INCO-Compernicus,ERBIC 15 CT970706)Research Foundation for Youth Scientist of Northeastern University,Shenyang,china(856049)
文摘Based on the (Ⅰ) of the present work, the behavior of shear beam model at crack initiation stage and at instable propagation stage was studied. The prime results include: 1) discriminant equation which clarifies the mode of instability, snap_back or snap_through, was established; 2) analytical solution was given out for the double shear beam and the load_displacement diagram for monotonic loading was presented for a full process; and 3) the problem of the energy release induced by instability was discussed.
基金Project supported by the National Major Science and Technology Special Project of China(No.2011ZX02503-003)
文摘The static avalanche breakdown behavior of 4.5 kV high-voltage IGBT is studied by theory analysis and experiment. The avalanche breakdown behaviors of the 4.5 kV IGBTs with different backside structures are investigated and compared by using the curve tracer. The results show that the snap back behavior of the breakdown waveform is related to the bipolar PNP gain, which leads to the deterioration of the breakdown voltage. There are two ways to optimize the backside structure, one is increasing the implant dose of the N^+ buffer layer, the other is decreasing the implant dose of the P^+ collector layer. It is found that the optimized structure is effective in suppressing the snap back behavior and improving the breakdown characteristic of high voltage IGBT.