A novel dual direction silicon-controlled rectifier(DDSCR)with an additional P-type doping and gate(APGDDSCR)is proposed and demonstrated.Compared with the conventional low-voltage trigger DDSCR(LVTDDSCR)that has posi...A novel dual direction silicon-controlled rectifier(DDSCR)with an additional P-type doping and gate(APGDDSCR)is proposed and demonstrated.Compared with the conventional low-voltage trigger DDSCR(LVTDDSCR)that has positive and negative holding voltages of 13.371 V and 14.038 V,respectively,the new DDSCR has high positive and negative holding voltages of 18.781 V and 18.912 V in a single finger device,respectively,and it exhibits suitable enough positive and negative holding voltages of 14.60 V and 14.319 V in a four-finger device for±12-V application.The failure current of APGDDSCR is almost the same as that of LVT-DDSCR in the single finger device,and the four-finger APGDDSCR can achieve positive and negative human-body model(HBM)protection capabilities of 22.281 kV and 23.45 kV,respectively,under 40-V voltage of core circuit failure,benefitting from the additional structure.The new structure can generate a snapback voltage on gate A to increase the current gain of the parasitic PNP in holding voltage.Thus,a sufficiently high holding voltage increased by the structure can ensure that a multi-finger device can also reach a sufficient holding voltage,it is equivalent to solving the non-uniform triggering problem of multi-finger device.The operating mechanism and the gate voltage are both discussed and verified in two-dimensional(2D)simulation and experiemnt.展开更多
A physically based equation for predicting required p-emitter length of a snapback-free reverse- conducting insulated gate bipolar transistor (RC-IGBT) with field-stop structure is proposed. The n-buffer resis- tanc...A physically based equation for predicting required p-emitter length of a snapback-free reverse- conducting insulated gate bipolar transistor (RC-IGBT) with field-stop structure is proposed. The n-buffer resis- tances above the p-emitter region with anode geometries of linear strip, circular and annular type are calculated, and based on this, the minimum p-emitter lengths of those three geometries are given and verified by simulation. It is found that good agreement was achieved between the numerical calculation and simulation results. Moreover, the calculation results show that the annular case needs the shortest p-emitter length for RC-IGBT to be snapback-free.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774129,61827812,and 61704145)the Huxiang High-level Talent Gathering Project from the Hunan Science and Technology Department,China(Grant No.2019RS1037)the Changsha Science and Technology Plan Key Projects,China(Grant Nos.kq1801035 and kq1703001).
文摘A novel dual direction silicon-controlled rectifier(DDSCR)with an additional P-type doping and gate(APGDDSCR)is proposed and demonstrated.Compared with the conventional low-voltage trigger DDSCR(LVTDDSCR)that has positive and negative holding voltages of 13.371 V and 14.038 V,respectively,the new DDSCR has high positive and negative holding voltages of 18.781 V and 18.912 V in a single finger device,respectively,and it exhibits suitable enough positive and negative holding voltages of 14.60 V and 14.319 V in a four-finger device for±12-V application.The failure current of APGDDSCR is almost the same as that of LVT-DDSCR in the single finger device,and the four-finger APGDDSCR can achieve positive and negative human-body model(HBM)protection capabilities of 22.281 kV and 23.45 kV,respectively,under 40-V voltage of core circuit failure,benefitting from the additional structure.The new structure can generate a snapback voltage on gate A to increase the current gain of the parasitic PNP in holding voltage.Thus,a sufficiently high holding voltage increased by the structure can ensure that a multi-finger device can also reach a sufficient holding voltage,it is equivalent to solving the non-uniform triggering problem of multi-finger device.The operating mechanism and the gate voltage are both discussed and verified in two-dimensional(2D)simulation and experiemnt.
基金Project supported by the Fundamental Research Funds for the Central Universities(No.E022050205)the National Natural Science Foundation of China(No.51237001)
文摘A physically based equation for predicting required p-emitter length of a snapback-free reverse- conducting insulated gate bipolar transistor (RC-IGBT) with field-stop structure is proposed. The n-buffer resis- tances above the p-emitter region with anode geometries of linear strip, circular and annular type are calculated, and based on this, the minimum p-emitter lengths of those three geometries are given and verified by simulation. It is found that good agreement was achieved between the numerical calculation and simulation results. Moreover, the calculation results show that the annular case needs the shortest p-emitter length for RC-IGBT to be snapback-free.