Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ab...Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ability to understand the characteristics of avalanche activity and hazards of different snow avalanche types is a prerequisite for improving avalanche disaster management in the mid-altitude region of the Central Tianshan Mountains.In this study,we collected data related to avalanche,snowpack,and meteorology during four snow seasons(from 2015 to 2019),and analysed the characteristics and hazards of different types of avalanches.The snow climate of the mid-altitude region of the Central Tianshan Mountains was examined using a snow climate classification scheme,and the results showed that the mountain range has a continental snow climate.To quantify the hazards of different types of avalanches and describe their situation over time in the continental snow climate region,this study used the avalanche hazard degree to assess the hazards of four types of avalanches,i.e.,full-depth dry snow avalanches,full-depth wet snow avalanches,surface-layer dry snow avalanches,and surface-layer wet snow avalanches.The results indicated that surface-layer dry snow avalanches were characterized by large sizes and high release frequencies,which made them having the highest avalanche hazard degree in the Central Tianshan Mountains with a continental snow climate.The overall avalanche hazard showed a single peak pattern over time during the snow season,and the greatest hazard occurred in the second half of February when the snowpack was deep and the temperature increased.This study can help the disaster and emergency management departments rationally arrange avalanche relief resources and develop avalanche prevention strategies.展开更多
Snow avalanches can repeatedly occur along the same track under diferent snowpack and meteorological conditions during the snow season in areas of snow avalanche activity.The snowfall,air temperature,and snow cover ca...Snow avalanches can repeatedly occur along the same track under diferent snowpack and meteorological conditions during the snow season in areas of snow avalanche activity.The snowfall,air temperature,and snow cover can change dramatically in a warming climate,causing signifcant changes in the snow avalanche risk.But how the risk of snow avalanche activity during the snow season will change under a warming climate remains an open question.Based on the observed meteorological and snowpack data from 1968 to 2021 and the snow avalanche activity data during the 2011–2021 snow seasons along a transportation corridor in the central Tianshan Mountains that has a typical continental snow climate,we analyzed the temporal distribution of the snow avalanche activity and the impacts of climate change on it.The results indicate that the frequency of the snow avalanche activity is characterized by a Gaussian bimodal distribution,resulting from interactions between the snowfall,air temperature,and snowpack evolution.In addition,the active period of wet snow avalanches triggered by temperature surges and high solar radiation has gradually moved forward from the second half to the frst half of March with climate warming.The frequency and size of snowfall-triggered snow avalanches showed only a slight and insignifcant increase.These fndings are important for rationally arranging snow avalanche relief resources to improve the risk management of snow avalanche disasters,and highlight the necessity to immediately design risk mitigation strategies and disaster risk policies to improve our adaptation to climate change.展开更多
Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the...Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the characteristics of triggering factors for avalanche activity in this region to improve road safety and the management of natural hazards. Based on the observation of avalanche activity along the national road G218 in the western Tianshan Mountains, avalanche event data in combination with meteorological, snowpack and earthquake data were collected and analyzed. The snow climate of the mountain range was examined using a recently developed snow climate classification scheme, and triggering conditions of snow avalanche in different snow climate regions were compared. The results show that snowfall is the most common triggering factor for a natural avalanche and there is high probability of avalanche release with snowfall exceeding 20.4 mm during a snowfall period. Consecutive rise in temperature within three days and daily mean temperature reaching 0.5℃ in the following day imply a high probability of temperaturerise-triggered avalanche release. Earthquakes have a significant impact on the formation of large size avalanches in the area. For the period 2011-2017, five cases were identified as a consequence of earthquake with magnitudes of 3.3≤M_L≤5.1 and source-to-site distances of 19~139 km. The Tianshan Mountains are characterized by a continental snow climate with lower snow density, lower snow shear strength and high proportion depth hoar, which explains that both the snowfall and temperature for triggering avalanche release in the continental snow climate of the Tianshan Mountains are lower than that in maritime snow climate and transitional snow climate regions. The findings help forecast avalanche release for mitigating avalanche disaster and assessing the risk of avalanche disaster.展开更多
The Palongzangbu River Basin contains the highest number of maritime province glaciers in China. There are 130 glacial lakes, 64 snow avalanche sites and 28 glacial debris flow gullies distributed within the basin. Sn...The Palongzangbu River Basin contains the highest number of maritime province glaciers in China. There are 130 glacial lakes, 64 snow avalanche sites and 28 glacial debris flow gullies distributed within the basin. Snow disasters play a controlling role in the Sichuan-Tibet Highway construction, due to the terrain’s special characteristics of high altitude and large height differential. Segmentation mitigation countermeasures for the Sichuan-Tibet Highway are presented based on snow disaster severity level and damage mode of the road. In the Ranwu to Midui section, snow avalanches are regional disasters, so the line should be placed in sunny slopes. In the Midui Gully to Yupu section, the line should be placed in shady slopes and at higher elevations to reduce the risk of glacial lake outburst. In the Yupu to Guxiang section, all three snow disasters are minimal. In the Guxiang to Tongmai section, glacier debris flows are the major threat, thus the road should be placed in shady slopes.展开更多
On 5th September 2022,a magnitude Ms-6.8 earthquake occurred nearby Mt.Gongga,western Sichuan.The stability of the glaciers in east Mt.Gongga close to the epicenter was widely concerned due to the strong shake trigger...On 5th September 2022,a magnitude Ms-6.8 earthquake occurred nearby Mt.Gongga,western Sichuan.The stability of the glaciers in east Mt.Gongga close to the epicenter was widely concerned due to the strong shake triggered by the earthquake.Using multi-source observations(including in-situ photographs,remote sensing datasets before and after the event),we carried out a preliminary assessment of the stability and hazard risks of the Hailuogou(HLG)glacier.Triggered by the earthquake,a small block of fractured ice at the lowest part of icefall collapsed.The magnitude of the coseismic ice avalanche was relatively small,which is comparable in size to most ice avalanches over the past seven years,but much less than the previous mapped largest one(03 April 2018,runout~699 m).One most recent large(runout~608 m)ice avalanche occurred between 01 and 04 September,just before the earthquake,likely unloaded large amount of ice mass and made a larger ice avalanche avoided during the earthquake shake.Nevertheless,the momentum of collapsed snow-icerock mass could be safely unloaded over a wide and gentler-slope ice tongue area,limiting its mobility and the risk of a cascading hazard.Glacier-wide surface flow dynamics monitored by Sentinel-1 satellite SAR time series(12 September 2021–19 September 2022)show that HLG glacier velocity was generally consistent before and after the earthquake.The entire HLG glacier exhibited more stable than expected,with almost no abnormal features detected in its upper accumulation part,the lower ice tongue,and its lateral paraglacial slopes.Since the glacier valley has experienced remarkable downwasting and the paraglacial environment has been strongly disturbed and destabilized,we suggested that,to efficiently evaluate glacier-related cascading hazard risks,it is also necessary to systematically combine multi-source observations(e.g.,high-resolution UAV survey,radar/Lidar scan,ground investigation,monitoring and warning systems)to continuously monitor the regional glacier anomalies in the post-earthquake seismic active areas.展开更多
Avalanche activities in the Indian Himalaya cause the majority of fatalities and responsible for heavy damage to the property.Avalanche susceptibility maps assist decision-makers and planners to execute suitable measu...Avalanche activities in the Indian Himalaya cause the majority of fatalities and responsible for heavy damage to the property.Avalanche susceptibility maps assist decision-makers and planners to execute suitable measures to reduce the avalanche risk.In the present study,a probabilistic data-driven geospatial fuzzy–frequency ratio(fuzzy–FR)model is proposed and developed for avalanche susceptibility mapping,especially for the large undocumented region.The fuzzy–FR model for avalanche susceptibility mapping is initially developed and applied for Lahaul-Spiti region.The fuzzy–FR model utilized the six avalanche occurrence factors(i.e.slope,aspect,curvature,elevation,terrain roughness and vegetation cover)and one referent avalanche inventory map to generate the avalanche susceptibility map.Amongst 292 documented avalanche locations from the avalanche inventory map,233(80%)were used for training the model and remaining 59(20%)were used for validation of the map.The avalanche susceptibility map is validated by calculating the area under the receiver operating characteristic curve(ROC-AUC)technique.For validation of the results using ROC-AUC technique,the success rate and prediction rate were calculated.The values of success rate and prediction rate were 94.07%and 91.76%,respectively.The validation of results using ROC-AUC indicated the fuzzy–FR model is appropriate for avalanche susceptibility mapping.展开更多
基金supported by the Open Project of the Xinjiang Uygur Autonomous Region Key Laboratory(2017D04010).
文摘Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ability to understand the characteristics of avalanche activity and hazards of different snow avalanche types is a prerequisite for improving avalanche disaster management in the mid-altitude region of the Central Tianshan Mountains.In this study,we collected data related to avalanche,snowpack,and meteorology during four snow seasons(from 2015 to 2019),and analysed the characteristics and hazards of different types of avalanches.The snow climate of the mid-altitude region of the Central Tianshan Mountains was examined using a snow climate classification scheme,and the results showed that the mountain range has a continental snow climate.To quantify the hazards of different types of avalanches and describe their situation over time in the continental snow climate region,this study used the avalanche hazard degree to assess the hazards of four types of avalanches,i.e.,full-depth dry snow avalanches,full-depth wet snow avalanches,surface-layer dry snow avalanches,and surface-layer wet snow avalanches.The results indicated that surface-layer dry snow avalanches were characterized by large sizes and high release frequencies,which made them having the highest avalanche hazard degree in the Central Tianshan Mountains with a continental snow climate.The overall avalanche hazard showed a single peak pattern over time during the snow season,and the greatest hazard occurred in the second half of February when the snowpack was deep and the temperature increased.This study can help the disaster and emergency management departments rationally arrange avalanche relief resources and develop avalanche prevention strategies.
基金supported by the Second Tibetan Plateau Scientifc Expedition and Research Program(STEP)(Grant nos.2019QZKK0906,2019QZKK0903)the National Natural Science Foundation of China(Grant no.42101080)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2022QNRC001)。
文摘Snow avalanches can repeatedly occur along the same track under diferent snowpack and meteorological conditions during the snow season in areas of snow avalanche activity.The snowfall,air temperature,and snow cover can change dramatically in a warming climate,causing signifcant changes in the snow avalanche risk.But how the risk of snow avalanche activity during the snow season will change under a warming climate remains an open question.Based on the observed meteorological and snowpack data from 1968 to 2021 and the snow avalanche activity data during the 2011–2021 snow seasons along a transportation corridor in the central Tianshan Mountains that has a typical continental snow climate,we analyzed the temporal distribution of the snow avalanche activity and the impacts of climate change on it.The results indicate that the frequency of the snow avalanche activity is characterized by a Gaussian bimodal distribution,resulting from interactions between the snowfall,air temperature,and snowpack evolution.In addition,the active period of wet snow avalanches triggered by temperature surges and high solar radiation has gradually moved forward from the second half to the frst half of March with climate warming.The frequency and size of snowfall-triggered snow avalanches showed only a slight and insignifcant increase.These fndings are important for rationally arranging snow avalanche relief resources to improve the risk management of snow avalanche disasters,and highlight the necessity to immediately design risk mitigation strategies and disaster risk policies to improve our adaptation to climate change.
基金supported by the Science and Technology Service Network Initiative of the Chinese Academy of Science (Grant No.KFJSTSZDTP-015)the National Project of Investigation of Basic Resources for Science and Technology (Grant No.2017FY100501)the supports in field and laboratory work from the Tianshan Station for Snow cover and Avalanche Research,Chinese Academy of Sciences
文摘Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the characteristics of triggering factors for avalanche activity in this region to improve road safety and the management of natural hazards. Based on the observation of avalanche activity along the national road G218 in the western Tianshan Mountains, avalanche event data in combination with meteorological, snowpack and earthquake data were collected and analyzed. The snow climate of the mountain range was examined using a recently developed snow climate classification scheme, and triggering conditions of snow avalanche in different snow climate regions were compared. The results show that snowfall is the most common triggering factor for a natural avalanche and there is high probability of avalanche release with snowfall exceeding 20.4 mm during a snowfall period. Consecutive rise in temperature within three days and daily mean temperature reaching 0.5℃ in the following day imply a high probability of temperaturerise-triggered avalanche release. Earthquakes have a significant impact on the formation of large size avalanches in the area. For the period 2011-2017, five cases were identified as a consequence of earthquake with magnitudes of 3.3≤M_L≤5.1 and source-to-site distances of 19~139 km. The Tianshan Mountains are characterized by a continental snow climate with lower snow density, lower snow shear strength and high proportion depth hoar, which explains that both the snowfall and temperature for triggering avalanche release in the continental snow climate of the Tianshan Mountains are lower than that in maritime snow climate and transitional snow climate regions. The findings help forecast avalanche release for mitigating avalanche disaster and assessing the risk of avalanche disaster.
基金financially supported by the general project of Natural Science Foundation of China (No. 41571004)Scientific and technological research and development plan of China Railway Corporation (No. 2015G002-N)General project of Natural Science Foundation of China (No. 41172321)
文摘The Palongzangbu River Basin contains the highest number of maritime province glaciers in China. There are 130 glacial lakes, 64 snow avalanche sites and 28 glacial debris flow gullies distributed within the basin. Snow disasters play a controlling role in the Sichuan-Tibet Highway construction, due to the terrain’s special characteristics of high altitude and large height differential. Segmentation mitigation countermeasures for the Sichuan-Tibet Highway are presented based on snow disaster severity level and damage mode of the road. In the Ranwu to Midui section, snow avalanches are regional disasters, so the line should be placed in sunny slopes. In the Midui Gully to Yupu section, the line should be placed in shady slopes and at higher elevations to reduce the risk of glacial lake outburst. In the Yupu to Guxiang section, all three snow disasters are minimal. In the Guxiang to Tongmai section, glacier debris flows are the major threat, thus the road should be placed in shady slopes.
基金funded by the Natural Science Foundation of China(Grants Nos.41871069 and 42071084)Outstanding Youth Scholars Foundation of Sichuan Province(Grants No.2021JDJQ0009)。
文摘On 5th September 2022,a magnitude Ms-6.8 earthquake occurred nearby Mt.Gongga,western Sichuan.The stability of the glaciers in east Mt.Gongga close to the epicenter was widely concerned due to the strong shake triggered by the earthquake.Using multi-source observations(including in-situ photographs,remote sensing datasets before and after the event),we carried out a preliminary assessment of the stability and hazard risks of the Hailuogou(HLG)glacier.Triggered by the earthquake,a small block of fractured ice at the lowest part of icefall collapsed.The magnitude of the coseismic ice avalanche was relatively small,which is comparable in size to most ice avalanches over the past seven years,but much less than the previous mapped largest one(03 April 2018,runout~699 m).One most recent large(runout~608 m)ice avalanche occurred between 01 and 04 September,just before the earthquake,likely unloaded large amount of ice mass and made a larger ice avalanche avoided during the earthquake shake.Nevertheless,the momentum of collapsed snow-icerock mass could be safely unloaded over a wide and gentler-slope ice tongue area,limiting its mobility and the risk of a cascading hazard.Glacier-wide surface flow dynamics monitored by Sentinel-1 satellite SAR time series(12 September 2021–19 September 2022)show that HLG glacier velocity was generally consistent before and after the earthquake.The entire HLG glacier exhibited more stable than expected,with almost no abnormal features detected in its upper accumulation part,the lower ice tongue,and its lateral paraglacial slopes.Since the glacier valley has experienced remarkable downwasting and the paraglacial environment has been strongly disturbed and destabilized,we suggested that,to efficiently evaluate glacier-related cascading hazard risks,it is also necessary to systematically combine multi-source observations(e.g.,high-resolution UAV survey,radar/Lidar scan,ground investigation,monitoring and warning systems)to continuously monitor the regional glacier anomalies in the post-earthquake seismic active areas.
基金Defence Research&Development Organisation(DRDO)Ministry of Defence,Government of India for providing funds under Project IABP/HimUdaan,No.IF-10/SAS-42,dated 30 September 2011 to carry out this research work.
文摘Avalanche activities in the Indian Himalaya cause the majority of fatalities and responsible for heavy damage to the property.Avalanche susceptibility maps assist decision-makers and planners to execute suitable measures to reduce the avalanche risk.In the present study,a probabilistic data-driven geospatial fuzzy–frequency ratio(fuzzy–FR)model is proposed and developed for avalanche susceptibility mapping,especially for the large undocumented region.The fuzzy–FR model for avalanche susceptibility mapping is initially developed and applied for Lahaul-Spiti region.The fuzzy–FR model utilized the six avalanche occurrence factors(i.e.slope,aspect,curvature,elevation,terrain roughness and vegetation cover)and one referent avalanche inventory map to generate the avalanche susceptibility map.Amongst 292 documented avalanche locations from the avalanche inventory map,233(80%)were used for training the model and remaining 59(20%)were used for validation of the map.The avalanche susceptibility map is validated by calculating the area under the receiver operating characteristic curve(ROC-AUC)technique.For validation of the results using ROC-AUC technique,the success rate and prediction rate were calculated.The values of success rate and prediction rate were 94.07%and 91.76%,respectively.The validation of results using ROC-AUC indicated the fuzzy–FR model is appropriate for avalanche susceptibility mapping.