A BATS-SAST model was employed to simulate the snow processes in four snow cases of Sk_OJP 2001/2002, 2002/2003, 2003/2004 and Sk_HarvestJP 2003/2004 of Canada. At Sk_OJP site we modified the long-wave radiation and p...A BATS-SAST model was employed to simulate the snow processes in four snow cases of Sk_OJP 2001/2002, 2002/2003, 2003/2004 and Sk_HarvestJP 2003/2004 of Canada. At Sk_OJP site we modified the long-wave radiation and precipitation schemes. Considering the different interceptions between rain and snow and the effect of wind and canopy temperature on snow download, we improved the canopy interception model. At Sk_HarvestJP site we modified the snow cover fraction scheme. Results show that the model reasonably simulates the basic processes of snow cover. The modified model, which considers the part of the long-wave radiation and precipitation transmitted through the canopy at Sk_OJP site, can increase the simulation of snow depth which is closer to the observations. The improved canopy interception model, which influences the variation of snow depth under the canopy by changing canopy interception, is a great improvement on simulation of snow depth, especially on the ablation of snow cover. At Sk_HarvestJP site, there are obvious improvements on simulation of snow depth on the ablation of snow cover.展开更多
基金supported by Chinese COPES project (GYHY200706005)by the Ministry of Science and Technology of China under Grant No.2007CB411505 and No.2010CB428400
文摘A BATS-SAST model was employed to simulate the snow processes in four snow cases of Sk_OJP 2001/2002, 2002/2003, 2003/2004 and Sk_HarvestJP 2003/2004 of Canada. At Sk_OJP site we modified the long-wave radiation and precipitation schemes. Considering the different interceptions between rain and snow and the effect of wind and canopy temperature on snow download, we improved the canopy interception model. At Sk_HarvestJP site we modified the snow cover fraction scheme. Results show that the model reasonably simulates the basic processes of snow cover. The modified model, which considers the part of the long-wave radiation and precipitation transmitted through the canopy at Sk_OJP site, can increase the simulation of snow depth which is closer to the observations. The improved canopy interception model, which influences the variation of snow depth under the canopy by changing canopy interception, is a great improvement on simulation of snow depth, especially on the ablation of snow cover. At Sk_HarvestJP site, there are obvious improvements on simulation of snow depth on the ablation of snow cover.