期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Simulation of roof snow loads based on a multi-layer snowmelt model:Impact of building heat transfer
1
作者 Xuanyi Zhou Heng Chen +1 位作者 Yue Wu Tiange Zhang 《Building Simulation》 SCIE EI CSCD 2024年第6期907-932,共26页
To investigate the impact of building heat transfer on roof snow loads,roof snow loads and snow load thermal coefficients from 61 Chinese sites over a period of 50 years are simulated based on basic meteorological dat... To investigate the impact of building heat transfer on roof snow loads,roof snow loads and snow load thermal coefficients from 61 Chinese sites over a period of 50 years are simulated based on basic meteorological data such as temperature,humidity,wind speed,and precipitation,and a multi-layer snowmelt model considering the building heat transfer.Firstly,the accuracy of the multi-layer snowmelt model is validated using the data of observed ground snow load and roof snow melting tests.The relationship between meteorological conditions,snow cover characteristics,and thermal coefficients of snow loads in three representative sites is then studied.Furthermore,the characteristics of thermal coefficients in each zone are analyzed by combining them with the statistical results of meteorological data from 1960 to 2010,and the equations of thermal coefficients in different zones on indoor temperatures and roof heat transfer coefficients are fitted separately.Finally,the equations in this paper are compared with the thermal coefficients in the main snow load codes.The results indicate that the snowmelt model using basic meteorological data can effectively provide samples of roof snow loads.In the cold zone where the snow cover lasts for a long time and does not melt easily,the thermal coefficients of the snow loads on the heating buildings are lower than those in the warm zone due to the long-term influence of the heat from inside the buildings.Thermal coefficients are negatively correlated with indoor temperatures and roof heat transfer coefficients.When the indoor temperature is too low or the roof insulation is good,the roof snow load may exceed the ground snow load.The thermal coefficients for heated buildings in the main snow load codes are more conservative than those calculated in this paper,and the thermal coefficients for buildings with lower indoor temperatures tend to be smaller. 展开更多
关键词 snowmelt model roof snow load building heat transfer thermal coefficient load code
原文传递
Collapse Behavior of Pipe-Framed Greenhouses with and without Reinforcement under Snow Loading:A 3-D Finite Element Analysis
2
作者 Yasushi Uematsu Kazuya Takahashi 《Journal of Civil Engineering and Architecture》 2024年第2期51-59,共9页
The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are ... The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern. 展开更多
关键词 Pipe-framed greenhouse snow loading COLLAPSE BUCKLING finite element analysis
下载PDF
Estimating Ground Snow Load Based on Ground Snow Depth and Climatological Elements for Snow Hazard Assessment in Northeastern China 被引量:1
3
作者 Huamei Mo Guolong Zhang +2 位作者 Qingwen Zhang H.P.Hong Feng Fan 《International Journal of Disaster Risk Science》 SCIE CSCD 2022年第5期743-757,共15页
Extreme snow loads can collapse roofs.This load is calculated based on the ground snow load(that is,the snow water equivalent on the ground).However,snow water equivalent(SWE) measurements are unavailable for most sit... Extreme snow loads can collapse roofs.This load is calculated based on the ground snow load(that is,the snow water equivalent on the ground).However,snow water equivalent(SWE) measurements are unavailable for most sites,while the ground snow depth is frequently measured and recorded.A new simple practical algorithm was proposed in this study to evaluate the SWE by utilizing ground snow depth,precipitation data,wind speed,and air temperature.For the evaluation,the precipitation was clas sified as snowfall or rainfall according to the air temperature,the snowfall or rainfall was then corrected for measurement error that is mainly caused by wind-induced undercatch,and the effect of snow water loss was considered.The developed algorithm was applied and validated using data from57 meteorological stations located in the northeastern region of China.The annual maximum SWE obtained based on the proposed algorithm was compared with that obtained from the actual SWE measurements.The return period values of the annual maximum ground snow load were estimated and compared to those obtained according to the procedure suggested by the Chinese structural design code.The comparison indicated that the use of the proposed algorithm leads to a good estimated SWE or ground snow load.Its use allowed the estimation of the ground snow load for sites without SWE measurement and facilitated snow hazard mapping. 展开更多
关键词 Ground snow depth Ground snow load Northeastern China Precipitation data snow hazard mapping snow water equivalent
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部