A set of detected avalanches from January to April 2012 on a hillside southeast of lschgl, Austria is given. The avalanches are off-the-cut or caused by blast. The meteorological data of two monitoring stations nearby...A set of detected avalanches from January to April 2012 on a hillside southeast of lschgl, Austria is given. The avalanches are off-the-cut or caused by blast. The meteorological data of two monitoring stations nearby the hillside are taken for analysing the weather situation. The meteorological parameters air temperature, wind intensity and wind speed, relative humidity, precipitation and snow depth are investigated for similarities short before and during an avalanche. The avalanches are grouped into three categories and meteorological characteristics are found for each category. Thereby the avalanche hazard for the observed hillside is better assessed and an infrastructure safety by avalanche control due to concerted avalanche blasts is more effective. The result of the analysis shows three kinds of hazard weather conditions, which increase the avalanche hazard: warm air temperatures cause a settlement of the snow pack, but in the beginning of the process a weakening in the snow pack happens. Rapidly decreasing of the air temperature cause cracks in the snow pack and the combination of fresh snow and strong wind speed leads to accumulation of snow on sheltered slopes.展开更多
In high elevation semi-arid rangelands, sage- brush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to inv...In high elevation semi-arid rangelands, sage- brush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush (Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth; sagebrush microtopogra- phy, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Vario- grams were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.展开更多
文摘A set of detected avalanches from January to April 2012 on a hillside southeast of lschgl, Austria is given. The avalanches are off-the-cut or caused by blast. The meteorological data of two monitoring stations nearby the hillside are taken for analysing the weather situation. The meteorological parameters air temperature, wind intensity and wind speed, relative humidity, precipitation and snow depth are investigated for similarities short before and during an avalanche. The avalanches are grouped into three categories and meteorological characteristics are found for each category. Thereby the avalanche hazard for the observed hillside is better assessed and an infrastructure safety by avalanche control due to concerted avalanche blasts is more effective. The result of the analysis shows three kinds of hazard weather conditions, which increase the avalanche hazard: warm air temperatures cause a settlement of the snow pack, but in the beginning of the process a weakening in the snow pack happens. Rapidly decreasing of the air temperature cause cracks in the snow pack and the combination of fresh snow and strong wind speed leads to accumulation of snow on sheltered slopes.
文摘In high elevation semi-arid rangelands, sage- brush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush (Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth; sagebrush microtopogra- phy, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Vario- grams were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.