In several fields like financial dealing,industry,business,medicine,et cetera,Big Data(BD)has been utilized extensively,which is nothing but a collection of a huge amount of data.However,it is highly complicated alon...In several fields like financial dealing,industry,business,medicine,et cetera,Big Data(BD)has been utilized extensively,which is nothing but a collection of a huge amount of data.However,it is highly complicated along with time-consuming to process a massive amount of data.Thus,to design the Distribution Preserving Framework for BD,a novel methodology has been proposed utilizing Manhattan Distance(MD)-centered Partition Around Medoid(MD–PAM)along with Conjugate Gradient Artificial Neural Network(CG-ANN),which undergoes various steps to reduce the complications of BD.Firstly,the data are processed in the pre-processing phase by mitigating the data repetition utilizing the map-reduce function;subsequently,the missing data are handled by substituting or by ignoring the missed values.After that,the data are transmuted into a normalized form.Next,to enhance the classification performance,the data’s dimensionalities are minimized by employing Gaussian Kernel(GK)-Fisher Discriminant Analysis(GK-FDA).Afterwards,the processed data is submitted to the partitioning phase after transmuting it into a structured format.In the partition phase,by utilizing the MD-PAM,the data are partitioned along with grouped into a cluster.Lastly,by employing CG-ANN,the data are classified in the classification phase so that the needed data can be effortlessly retrieved by the user.To analogize the outcomes of the CG-ANN with the prevailing methodologies,the NSL-KDD openly accessible datasets are utilized.The experiential outcomes displayed that an efficient result along with a reduced computation cost was shown by the proposed CG-ANN.The proposed work outperforms well in terms of accuracy,sensitivity and specificity than the existing systems.展开更多
文摘In several fields like financial dealing,industry,business,medicine,et cetera,Big Data(BD)has been utilized extensively,which is nothing but a collection of a huge amount of data.However,it is highly complicated along with time-consuming to process a massive amount of data.Thus,to design the Distribution Preserving Framework for BD,a novel methodology has been proposed utilizing Manhattan Distance(MD)-centered Partition Around Medoid(MD–PAM)along with Conjugate Gradient Artificial Neural Network(CG-ANN),which undergoes various steps to reduce the complications of BD.Firstly,the data are processed in the pre-processing phase by mitigating the data repetition utilizing the map-reduce function;subsequently,the missing data are handled by substituting or by ignoring the missed values.After that,the data are transmuted into a normalized form.Next,to enhance the classification performance,the data’s dimensionalities are minimized by employing Gaussian Kernel(GK)-Fisher Discriminant Analysis(GK-FDA).Afterwards,the processed data is submitted to the partitioning phase after transmuting it into a structured format.In the partition phase,by utilizing the MD-PAM,the data are partitioned along with grouped into a cluster.Lastly,by employing CG-ANN,the data are classified in the classification phase so that the needed data can be effortlessly retrieved by the user.To analogize the outcomes of the CG-ANN with the prevailing methodologies,the NSL-KDD openly accessible datasets are utilized.The experiential outcomes displayed that an efficient result along with a reduced computation cost was shown by the proposed CG-ANN.The proposed work outperforms well in terms of accuracy,sensitivity and specificity than the existing systems.