期刊文献+
共找到9,400篇文章
< 1 2 250 >
每页显示 20 50 100
Citation and bibliographic coupling between authors in the field of social network analysis
1
作者 Daria Maltseva Vladimir Batagelj 《Journal of Data and Information Science》 CSCD 2024年第4期110-154,共45页
Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at t... Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time. 展开更多
关键词 Development of scientific fields social network analysis Bibliographic network Temporal network CITATION Bibliographic coupling
下载PDF
User Profile & Attitude Analysis Based on Unstructured Social Media and Online Activity
2
作者 Yuting Tan Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第6期463-473,共11页
As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain ... As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis. 展开更多
关键词 social Media User Behavior analysis Sentiment analysis Data Mining Machine Learning User Profiling CYBERSECURITY Behavioral Insights Personality Prediction
下载PDF
Dynamic Hypergraph Modeling and Robustness Analysis for SIoT
3
作者 Yue Wan Nan Jiang Ziyu Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期3017-3034,共18页
The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which over... The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which overcomes the limitations of the IoT’s focus on associations between objects.Artificial Intelligence(AI)technology is rapidly evolving.It is critical to build trustworthy and transparent systems,especially with system security issues coming to the surface.This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT,aiming to build an SIoT hypergraph generation model to explore the complex interactions between entities in the context of intelligent SIoT.Current hypergraph generation models impose too many constraints and fail to capture more details of real hypernetworks.In contrast,this paper proposes a hypergraph generation model that evolves dynamically over time,where only the number of nodes is fixed.It combines node wandering with a forest fire model and uses two different methods to control the size of the hyperedges.As new nodes are added,the model can promptly reflect changes in entities and relationships within SIoT.Experimental results exhibit that our model can effectively replicate the topological structure of real-world hypernetworks.We also evaluate the vulnerability of the hypergraph under different attack strategies,which provides theoretical support for building a more robust intelligent SIoT hypergraph model and lays the foundation for building safer and more reliable systems in the future. 展开更多
关键词 Large-scale artificial intelligence social Internet of Things hypernetwork robustness analysis
下载PDF
A Parallel Approach for Sentiment Analysis on Social Networks Using Spark 被引量:1
4
作者 M.Mohamed Iqbal K.Latha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1831-1842,共12页
The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics.As a result,social media has emerged as the most effective and largest open source for... The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics.As a result,social media has emerged as the most effective and largest open source for obtaining public opinion.Single node computational methods are inefficient for sentiment analysis on such large datasets.Supercomputers or parallel or distributed proces-sing are two options for dealing with such large amounts of data.Most parallel programming frameworks,such as MPI(Message Processing Interface),are dif-ficult to use and scale in environments where supercomputers are expensive.Using the Apache Spark Parallel Model,this proposed work presents a scalable system for sentiment analysis on Twitter.A Spark-based Naive Bayes training technique is suggested for this purpose;unlike prior research,this algorithm does not need any disk access.Millions of tweets have been classified using the trained model.Experiments with various-sized clusters reveal that the suggested strategy is extremely scalable and cost-effective for larger data sets.It is nearly 12 times quicker than the Map Reduce-based model and nearly 21 times faster than the Naive Bayes Classifier in Apache Mahout.To evaluate the framework’s scalabil-ity,we gathered a large training corpus from Twitter.The accuracy of the classi-fier trained with this new dataset was more than 80%. 展开更多
关键词 social networks sentiment analysis big data SPARK tweets classification
下载PDF
Analysis of Urban Agglomeration Network Structure Based on Baidu Migration Data: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Urban Agglomeration
5
作者 XIA Yuan WANG Bin 《Journal of Landscape Research》 2024年第4期47-50,共4页
The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure ... The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data. 展开更多
关键词 Baidu migration data social network analysis Urban agglomeration network structure Greater Bay Area urban agglomeration
下载PDF
Multimodal sentiment analysis for social media contents during public emergencies
6
作者 Tao Fan Hao Wang +2 位作者 Peng Wu Chen Ling Milad Taleby Ahvanooey 《Journal of Data and Information Science》 CSCD 2023年第3期61-87,共27页
Purpose:Nowadays,public opinions during public emergencies involve not only textual contents but also contain images.However,the existing works mainly focus on textual contents and they do not provide a satisfactory a... Purpose:Nowadays,public opinions during public emergencies involve not only textual contents but also contain images.However,the existing works mainly focus on textual contents and they do not provide a satisfactory accuracy of sentiment analysis,lacking the combination of multimodal contents.In this paper,we propose to combine texts and images generated in the social media to perform sentiment analysis.Design/methodology/approach:We propose a Deep Multimodal Fusion Model(DMFM),which combines textual and visual sentiment analysis.We first train word2vec model on a large-scale public emergency corpus to obtain semantic-rich word vectors as the input of textual sentiment analysis.BiLSTM is employed to generate encoded textual embeddings.To fully excavate visual information from images,a modified pretrained VGG16-based sentiment analysis network is used with the best-performed fine-tuning strategy.A multimodal fusion method is implemented to fuse textual and visual embeddings completely,producing predicted labels.Findings:We performed extensive experiments on Weibo and Twitter public emergency datasets,to evaluate the performance of our proposed model.Experimental results demonstrate that the DMFM provides higher accuracy compared with baseline models.The introduction of images can boost the performance of sentiment analysis during public emergencies.Research limitations:In the future,we will test our model in a wider dataset.We will also consider a better way to learn the multimodal fusion information.Practical implications:We build an efficient multimodal sentiment analysis model for the social media contents during public emergencies.Originality/value:We consider the images posted by online users during public emergencies on social platforms.The proposed method can present a novel scope for sentiment analysis during public emergencies and provide the decision support for the government when formulating policies in public emergencies. 展开更多
关键词 Public emergency Multimodal sentiment analysis social platform Textual sentiment analysis Visual sentiment analysis
下载PDF
From Social Media to Ballot Box:Leveraging Location-Aware Sentiment Analysis for Election Predictions
7
作者 Asif Khan Nada Boudjellal +2 位作者 Huaping Zhang Arshad Ahmad Maqbool Khan 《Computers, Materials & Continua》 SCIE EI 2023年第12期3037-3055,共19页
Predicting election outcomes is a crucial undertaking,and various methods are employed for this purpose,such as traditional opinion polling,and social media analysis.However,traditional polling approaches often strugg... Predicting election outcomes is a crucial undertaking,and various methods are employed for this purpose,such as traditional opinion polling,and social media analysis.However,traditional polling approaches often struggle to capture the intricate nuances of voter sentiment at local levels,resulting in a limited depth of analysis and understanding.In light of this challenge,this study focuses on predicting elections at the state/regional level along with the country level,intending to offer a comprehensive analysis and deeper insights into the electoral process.To achieve this,the study introduces the Location-Based Election Prediction Model(LEPM),which utilizes social media data,specifically Twitter,and integrates location-aware sentiment analysis techniques at both the state/region and country levels.LEPM predicts the support and opposing strength of each political party/candidate.To determine the location of users/voters who have not disclosed their location information in tweets,the model utilizes a Voter Location Detection(VotLocaDetect)approach,which leverages recent tweets/posts.The sentiment analysis techniques employed in this study include rule-based sentiment analysis,Valence Aware Dictionary and Sentiment Reasoner(VADER)as well as transformers-based sentiment analysis such as Bidirectional Encoder Representations from Transformers(BERT),BERTweet,and Election based BERT(ElecBERT).This study uses the 2020 United States(US)Presidential Election as a case study.By applying the LEPM model to the election,the study demonstrates its ability to accurately predict outcomes in forty-one states,achieving an 0.84 accuracy rate at the state level.Moreover,at the country level,the LEPM model outperforms traditional polling results.With a low Mean Absolute Error(MAE)of 0.87,the model exhibits more precise predictions and serves as a successful alternative to conventional polls and other methodologies.Leveraging the extensive social media data,the LEPM model provides nuanced insights into voter behavior,enabling policymakers to make informed decisions and facilitating in-depth analyses of elections.The study emphasizes the importance of using social media data for reliable election prediction and offers implications for enhancing prediction accuracy and understanding voter sentiment and behavior. 展开更多
关键词 Sentiment analysis big data machine learning election predictions social media analysis
下载PDF
Public Sentiment Analysis of Social Security Emergencies Based on Feature Fusion Model of BERT and TextLevelGCN
8
作者 Linli Wang Hu Wang Hanlu Lei 《Journal of Computer and Communications》 2023年第5期194-204,共11页
At present, the emotion classification method of Weibo public opinions based on graph neural network cannot solve the polysemy problem well, and the scale of global graph with fixed weight is too large. This paper pro... At present, the emotion classification method of Weibo public opinions based on graph neural network cannot solve the polysemy problem well, and the scale of global graph with fixed weight is too large. This paper proposes a feature fusion network model Bert-TextLevelGCN based on BERT pre-training and improved TextGCN. On the one hand, Bert is introduced to obtain the initial vector input of graph neural network containing rich semantic features. On the other hand, the global graph connection window of traditional TextGCN is reduced to the text level, and the message propagation mechanism of global sharing is applied. Finally, the output vector of BERT and TextLevelGCN is fused by interpolation update method, and a more robust mapping of positive and negative sentiment classification of public opinion text of “Tangshan Barbecue Restaurant beating people” is obtained. In the context of the national anti-gang campaign, it is of great significance to accurately and efficiently analyze the emotional characteristics of public opinion in sudden social violence events with bad social impact, which is of great significance to improve the government’s public opinion warning and response ability to public opinion in sudden social security events. . 展开更多
关键词 social Security Emergencies Network Public Opinion Emotion analysis Graph Neural Network TextLevelGCN BERT
下载PDF
Improving Sentiment Analysis in Election-Based Conversations on Twitter with ElecBERT Language Model 被引量:3
9
作者 Asif Khan Huaping Zhang +2 位作者 Nada Boudjellal Arshad Ahmad Maqbool Khan 《Computers, Materials & Continua》 SCIE EI 2023年第9期3345-3361,共17页
Sentiment analysis plays a vital role in understanding public opinions and sentiments toward various topics.In recent years,the rise of social media platforms(SMPs)has provided a rich source of data for analyzing publ... Sentiment analysis plays a vital role in understanding public opinions and sentiments toward various topics.In recent years,the rise of social media platforms(SMPs)has provided a rich source of data for analyzing public opinions,particularly in the context of election-related conversations.Nevertheless,sentiment analysis of electionrelated tweets presents unique challenges due to the complex language used,including figurative expressions,sarcasm,and the spread of misinformation.To address these challenges,this paper proposes Election-focused Bidirectional Encoder Representations from Transformers(ElecBERT),a new model for sentiment analysis in the context of election-related tweets.Election-related tweets pose unique challenges for sentiment analysis due to their complex language,sarcasm,andmisinformation.ElecBERT is based on the Bidirectional Encoder Representations from Transformers(BERT)language model and is fine-tuned on two datasets:Election-Related Sentiment-Annotated Tweets(ElecSent)-Multi-Languages,containing 5.31 million labeled tweets in multiple languages,and ElecSent-English,containing 4.75million labeled tweets in English.Themodel outperforms othermachine learning models such as Support Vector Machines(SVM),Na飗e Bayes(NB),and eXtreme Gradient Boosting(XGBoost),with an accuracy of 0.9905 and F1-score of 0.9816 on ElecSent-Multi-Languages,and an accuracy of 0.9930 and F1-score of 0.9899 on ElecSent-English.The performance of differentmodels was compared using the 2020 United States(US)Presidential Election as a case study.The ElecBERT-English and ElecBERT-Multi-Languages models outperformed BERTweet,with the ElecBERT-English model achieving aMean Absolute Error(MAE)of 6.13.This paper presents a valuable contribution to sentiment analysis in the context of election-related tweets,with potential applications in political analysis,social media management,and policymaking. 展开更多
关键词 Sentiment analysis social media election prediction machine learning TRANSFORMERS
下载PDF
Sentiment Analysis with Tweets Behaviour in Twitter Streaming API 被引量:1
10
作者 Kuldeep Chouhan Mukesh Yadav +4 位作者 Ranjeet Kumar Rout Kshira Sagar Sahoo NZ Jhanjhi Mehedi Masud Sultan Aljahdali 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1113-1128,共16页
Twitter is a radiant platform with a quick and effective technique to analyze users’perceptions of activities on social media.Many researchers and industry experts show their attention to Twitter sentiment analysis t... Twitter is a radiant platform with a quick and effective technique to analyze users’perceptions of activities on social media.Many researchers and industry experts show their attention to Twitter sentiment analysis to recognize the stakeholder group.The sentiment analysis needs an advanced level of approaches including adoption to encompass data sentiment analysis and various machine learning tools.An assessment of sentiment analysis in multiple fields that affect their elevations among the people in real-time by using Naive Bayes and Support Vector Machine(SVM).This paper focused on analysing the distinguished sentiment techniques in tweets behaviour datasets for various spheres such as healthcare,behaviour estimation,etc.In addition,the results in this work explore and validate the statistical machine learning classifiers that provide the accuracy percentages attained in terms of positive,negative and neutral tweets.In this work,we obligated Twitter Application Programming Interface(API)account and programmed in python for sentiment analysis approach for the computational measure of user’s perceptions that extract a massive number of tweets and provide market value to the Twitter account proprietor.To distinguish the results in terms of the performance evaluation,an error analysis investigates the features of various stakeholders comprising social media analytics researchers,Natural Language Processing(NLP)developers,engineering managers and experts involved to have a decision-making approach. 展开更多
关键词 Machine learning Naive Bayes natural language processing sentiment analysis social media analytics support vector machine Twitter application programming interface
下载PDF
The Research on E-mail Users' Behavior of Participating in Subjects Based on Social Network Analysis 被引量:3
11
作者 ZHANG Lejun ZHOU Tongxin +2 位作者 Qi Zhixin GUO Lin XU Li 《China Communications》 SCIE CSCD 2016年第4期70-80,共11页
The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related in... The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition. 展开更多
关键词 E-MAIL NETWORK social NETWORK analysis user BEHAVIOR analysis KEYWORD selection
下载PDF
Sigmoidal Particle Swarm Optimization for Twitter Sentiment Analysis
12
作者 Sandeep Kumar Muhammad Badruddin Khan +3 位作者 Mozaherul Hoque Abul Hasanat Abdul Khader Jilani Saudagar Abdullah AlTameem Mohammed AlKhathami 《Computers, Materials & Continua》 SCIE EI 2023年第1期897-914,共18页
Social media,like Twitter,is a data repository,and people exchange views on global issues like the COVID-19 pandemic.Social media has been shown to influence the low acceptance of vaccines.This work aims to identify p... Social media,like Twitter,is a data repository,and people exchange views on global issues like the COVID-19 pandemic.Social media has been shown to influence the low acceptance of vaccines.This work aims to identify public sentiments concerning the COVID-19 vaccines and better understand the individual’s sensitivities and feelings that lead to achievement.This work proposes a method to analyze the opinion of an individual’s tweet about the COVID-19 vaccines.This paper introduces a sigmoidal particle swarm optimization(SPSO)algorithm.First,the performance of SPSO is measured on a set of 12 benchmark problems,and later it is deployed for selecting optimal text features and categorizing sentiment.The proposed method uses TextBlob and VADER for sentiment analysis,CountVectorizer,and term frequency-inverse document frequency(TF-IDF)vectorizer for feature extraction,followed by SPSO-based feature selection.The Covid-19 vaccination tweets dataset was created and used for training,validating,and testing.The proposed approach outperformed considered algorithms in terms of accuracy.Additionally,we augmented the newly created dataset to make it balanced to increase performance.A classical support vector machine(SVM)gives better accuracy for the augmented dataset without a feature selection algorithm.It shows that augmentation improves the overall accuracy of tweet analysis.After the augmentation performance of PSO and SPSO is improved by almost 7%and 5%,respectively,it is observed that simple SVMwith 10-fold cross-validation significantly improved compared to the primary dataset. 展开更多
关键词 Twitter data analysis sentiment analysis social media analytics swarm intelligence COVID-19 vaccine
下载PDF
Social network analysis and modeling of cellphone-based syndromic surveillance data for ebola in Sierra Leone 被引量:1
13
作者 Jia B Kangbai 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第9期829-833,共5页
Objective:To explore and visualize the connectivity of suspected Ebola cases and surveillance callers who used cellphone technology in Moyamba District in Sierra Leone for Ebola surveillance,and to examine the demogra... Objective:To explore and visualize the connectivity of suspected Ebola cases and surveillance callers who used cellphone technology in Moyamba District in Sierra Leone for Ebola surveillance,and to examine the demographic differences and characteristics of Ebola surveillance callers who make more calls as well as those callers who are more likely to make at least one positive Ebola call.Methods:Surveillance data for 393 suspected Ebola cases(192 males,201 females) were collected from October 23,2014 to June 28,2015 using cellphone technology.UCINET and Net Draw software were used to explore and visualize the social connectivity between callers and suspected Ebola cases.Poisson and logistic regression analyses were used to do multivariable analysis.Results:The entire social network was comprised of 393 ties and 745 nodes.Women(AOR=0.33,95% CI [0.14,0.81]) were associated with decreased odds of making at least one positive Ebola surveillance call compared to men.Women(IR= 0.63,95% CI [0.49,0.82]) were also associated with making fewer Ebola surveillance calls compared to men.Conclusion:Social network visualization can analyze syndromic surveillance data for Ebola collected by cellphone technology with unique insights. 展开更多
关键词 EBOLA SYNDROMIC SURVEILLANCE social network analysis Cellphone Outdegree CENTRALITY
下载PDF
Web Intelligence with Enhanced Sunflower Optimization Algorithm for Sentiment Analysis
14
作者 Abeer D.Algarni 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1233-1247,共15页
Exponential increase in the quantity of user generated content in websites and social networks have resulted in the emergence of web intelligence approaches.Several natural language processing(NLP)tools are commonly u... Exponential increase in the quantity of user generated content in websites and social networks have resulted in the emergence of web intelligence approaches.Several natural language processing(NLP)tools are commonly used to examine the large quantity of data generated online.Particularly,sentiment analysis(SA)is an effective way of classifying the data into different classes of user opinions or sentiments.The latest advances in machine learning(ML)and deep learning(DL)approaches offer an intelligent way of analyzing sentiments.In this view,this study introduces a web intelligence with enhanced sunflower optimization based deep learning model for sentiment analysis(WIESFO-DLSA)technique.The major intention of the WIESFO-DLSA technique is to identify the expressions or sentiments that exist in the social networking data.The WIESFO-DLSA technique initially performs pre-processing and word2vec feature extraction processes to generate a meaningful set of features.At the same time,bidirectional long short term memory(BiLSTM)model is applied for classification of sentiments into different class labels.Moreover,an enhanced sunflower optimization(ESFO)algorithm is exploited to optimally adjust the hyperparameters of the BiLSTM model.A wide range of simulation analyses is performed to report the better outcomes of the WISFO-DLSA technique and the experimental outcomes ensured its promising performance under several measures. 展开更多
关键词 Sentiment analysis web intelligence deep learning social networking natural language processing
下载PDF
A Machine Learning-Based Technique with Intelligent WordNet Lemmatize for Twitter Sentiment Analysis
15
作者 S.Saranya G.Usha 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期339-352,共14页
Laterally with the birth of the Internet,the fast growth of mobile stra-tegies has democratised content production owing to the widespread usage of social media,resulting in a detonation of short informal writings.Twi... Laterally with the birth of the Internet,the fast growth of mobile stra-tegies has democratised content production owing to the widespread usage of social media,resulting in a detonation of short informal writings.Twitter is micro-blogging short text and social networking services,with posted millions of quick messages.Twitter analysis addresses the topic of interpreting users’tweets in terms of ideas,interests,and views in a range of settings andfields.This type of study can be useful for a variation of academics and applications that need knowing people’s perspectives on a given topic or event.Although sentiment examination of these texts is useful for a variety of reasons,it is typically seen as a difficult undertaking due to the fact that these messages are frequently short,informal,loud,and rich in linguistic ambiguities such as polysemy.Furthermore,most contemporary sentiment analysis algorithms are based on clean data.In this paper,we offers a machine-learning-based sentiment analysis method that extracts features from Term Frequency and Inverse Document Frequency(TF-IDF)and needs to apply deep intelligent wordnet lemmatize to improve the excellence of tweets by removing noise.We also utilise the Random Forest network to detect the emotion of a tweet.To authenticate the proposed approach performance,we conduct extensive tests on publically accessible datasets,and thefindings reveal that the suggested technique significantly outperforms sentiment classification in multi-class emotion text data. 展开更多
关键词 Random Forest sentiment analysis social media term frequency and inverse document frequency TWITTER wordnet lemmatize
下载PDF
Knowledge flow analysis of knowledge co-production-based climate change adaptation for lowland rice farmers in Bulukumba Regency,Indonesia
16
作者 Arifah Darmawan SALMAN +1 位作者 Amir YASSI Eymal Bahsar DEMMALLINO 《Regional Sustainability》 2023年第2期194-202,共9页
To increase the resilience of farmers’livelihood systems,detailed knowledge of adaptation strategies for dealing with the impacts of climate change is required.Knowledge co-production approach is an adaptation strate... To increase the resilience of farmers’livelihood systems,detailed knowledge of adaptation strategies for dealing with the impacts of climate change is required.Knowledge co-production approach is an adaptation strategy that is considered appropriate in the context of the increasing frequency of disasters caused by climate change.Previous research of knowledge co-production on climate change adaptation in Indonesia is insufficient,particularly at local level,so we examined the flow of climate change adaptation knowledge in the knowledge co-production process through climate field school(CFS)activities in this study.We interviewed 120 people living in Bulukumba Regency,South Sulawesi Province,Indonesia,involving 12 crowds including male and female farmers participated in CFS and not participated in CFS,local government officials,agriculture extension workers,agricultural traders,farmers’family members and neighbors,etc.In brief,the 12 groups of people mainly include two categories of people,i.e.,people involved in CFS activities and outside CFS.We applied descriptive method and Social network analysis(SNA)to determine how knowledge flow in the community network and which groups of actors are important for knowledge flow.The findings of this study reveal that participants in CFS activities convey the knowledge they acquired formally(i.e.,from TV,radio,government,etc.)and informally(i.e.,from market,friends,relatives,etc.)to other actors,especially to their families and neighbors.The results also show that the acquisition and sharing of knowledge facilitate the flow of climate change adaptation knowledge based on knowledge co-operation.In addition,the findings highlight the key role of actors in the knowledge transfer process,and key actors involved in disseminating information about climate change adaptation.To be specific,among all the actors,family member and neighbor of CFS actor are the most common actors in disseminating climate knowledge information and closest to other actors in the network;agricultural trader and family member of CFS actor collaborate most with other actors in the community network;and farmers participated in CFS,including those heads of farmer groups,agricultural extension workers,and local government officials are more willing to contact with other actors in the network.To facilitate the flow of knowledge on climate change adaptation,CFS activities should be conducted regularly and CFS models that fit the situation of farmers’vulnerability to climate change should be developed. 展开更多
关键词 Climate change adaptation Knowledge flow Knowledge co-production Climate field school(CFS) social network analysis(SNA) Indonesia
下载PDF
Dynamic Social Network Analysis with Heterogeneous Sensors in Ambient Environment 被引量:1
17
作者 Sho Tsugawa Hiroyuki Ohsaki +3 位作者 Yuichi Itoh Naoaki Ono Keiichiro Kagawa Kazuki Takashima 《Social Networking》 2014年第1期9-18,共10页
This paper presents our vision of large-scale, dynamic social network analysis in real environments, which we expect to be enabled by the introduction of large-scale heterogeneous sensors in the ambient environment. W... This paper presents our vision of large-scale, dynamic social network analysis in real environments, which we expect to be enabled by the introduction of large-scale heterogeneous sensors in the ambient environment. We address challenges in realizing large-scale dynamic social network analysis in real environments, and discuss several promising applications. Moreover, we present our design and implementation of a prototype system for quasi-realtime social network construction. We finally present preliminary experimental results of dynamic social network analysis for six-person social gatherings in a real environment, and discuss the feasibility of dynamic social network analysis and its effectiveness. 展开更多
关键词 social NETWORK AMBIENT ENVIRONMENT DYNAMIC social NETWORK analysis CENTRALITY
下载PDF
Emotion Analysis on Social Big Data 被引量:1
18
作者 REN Fuji Kazuyuki Matsumoto 《ZTE Communications》 2017年第B12期30-37,共8页
In this paper,we describe a method of emotion analysis on social big data.Social big data means text data that is emerging on Internet social networking services.We collect multilingual web corpora and annotated emoti... In this paper,we describe a method of emotion analysis on social big data.Social big data means text data that is emerging on Internet social networking services.We collect multilingual web corpora and annotated emotion tags to these corpora for the purpose of emotion analysis.Because these data are constructed by manual annotation,their quality is high but their quantity is low.If we create an emotion analysis model based on this corpus with high quality and use the model for the analysis of social big data,we might be able to statistically analyze emotional sensesand behavior of the people in Internet communications,which we could not know before.In this paper,we create an emotion analysis model that integrate the highquality emotion corpus and the automaticconstructed corpus that we created in our past studies,and then analyze a large-scale corpus consisting of Twitter tweets based on the model.As the result of time-series analysis on the large-scale corpus and the result of model evaluation,we show the effectiveness of our proposed method. 展开更多
关键词 EMOTION analysis social BIG DATA analysis AFFECTIVE computin
下载PDF
How Do the Evolution and Innovation of Social Network Analysis Matter to Computer Science and Communications? 被引量:1
19
作者 Romana Xerez 《Social Networking》 2013年第3期147-151,共5页
This paper provides a comprehensive overview of evolution and innovation in social network analysis to the paradigm of social networking. It explains how the development of sociological theory and the structural prope... This paper provides a comprehensive overview of evolution and innovation in social network analysis to the paradigm of social networking. It explains how the development of sociological theory and the structural properties of social groups matter to computer science and communications. Authors such as Moreno, John Barnes and Harrison C. White provide evidence of a growing body of literature addressing the networking of people, organizations and communities to explain the structure of society. This perspective has passed from sociology to other fields, changing understandings of social phenomena. Social networks remain a potent concept for analyzing computer science and communications. This paper shows how and why this has occurred and examines substantive areas in which social network analysis has been applied—mainly how the advantages of graphic visualization and computer software packages have influenced SNA in different audiences and publics leading to the unfolding of social networking to different audiences and publics. 展开更多
关键词 social Network analysis Theory PARADIGM Software
下载PDF
The Influence Factors of Collective Intelligence Emergence in Knowledge Communities Based on Social Network Analysis 被引量:1
20
作者 Zhihong Li Ya’nan Xu Kexin Li 《International Journal of Intelligence Science》 2019年第1期23-43,共21页
The advent of the age of Information shifts the environment we live in from off-line to on-line. The prospect of Collective Intelligence (CI) is promising. Based on this background, the aim of this paper is to discove... The advent of the age of Information shifts the environment we live in from off-line to on-line. The prospect of Collective Intelligence (CI) is promising. Based on this background, the aim of this paper is to discover the emergence mechanism and influence factors of CI in knowledge communities using the method of quantitative and qualitative analysis. On the basis of the previous research work, our model theorizes that the two dimensions of social network (i.e., interactive network structure and participant’s characteristics) affect two references of effectiveness (i.e. group knowledge production and participation of group decision). And this hypothetical model is validated with simulation data from “Zhihu” community. Our model has been useful since it offers some inspirations and directions to promote the level of CI in knowledge communities. 展开更多
关键词 COLLECTIVE INTELLIGENCE KNOWLEDGE Community social Network analysis Zhihu
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部