The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related in...The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition.展开更多
Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behaviora...Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behavioral preferences. The actor-based stochastic models (ABSM) are developed to study the interdependence of social networks and behavior. These methods are efficient and useful for analysis of discrete behaviors, such as drinking and smoking;however, since the behavior evolution function is in an exponential format, the ABSM can generate inconsistent and unrealistic results when the behavior variable is continuous or has a large range, such as hours of television watched or body mass index. To more realistically model continuous behavior variables, we propose a co-evolution process based on a linear model which is consistent over time and has an intuitive interpretation. In the simulation study, we applied the expectation maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to find the maximum likelihood estimate (MLE) of parameter values. Additionally, we show that our assumptions are reasonable using data from the National Longitudinal Study of Adolescent Health (Add Health).展开更多
Massive Multiplayer Online Games (MMOG) have attracted millions of players in recent years. In MMOG, players organize themselves voluntarily and fulfill collective tasks together. Because each player can join differen...Massive Multiplayer Online Games (MMOG) have attracted millions of players in recent years. In MMOG, players organize themselves voluntarily and fulfill collective tasks together. Because each player can join different activities, one player may show different social relationship with others in different activities. In the paper we proposed the incremental label propagation algorithm to search the cliques accurately and quickly. Then we analyzed community structure characteristics on multi-activities. It's shown that the existing guild organization cannot satisfy the requirements of multi-activities in MMOG, which motivates us to devise new community communication channels and platforms in future.展开更多
Purpose: In the Web 2.0 era,leveraging the collective power of user knowledge contributions has become an important part of the study of collective intelligence. This research aims to investigate the factors which inf...Purpose: In the Web 2.0 era,leveraging the collective power of user knowledge contributions has become an important part of the study of collective intelligence. This research aims to investigate the factors which influence knowledge contribution behavior of social networking sites(SNS) users.Design/methodology/approach: The data were obtained from an online survey of 251 social networking sites users. Structural equation modeling analysis was used to validate the proposed model.Findings: Our survey shows that the individuals' motivation for knowledge contribution,their capability of contributing knowledge,interpersonal trust and their own habits positively influence their knowledge contribution behavior,but reward does not significantly influence knowledge contribution in the online virtual community.Research limitations: Respondents of our online survey are mainly undergraduate and graduate students. A limited sample group cannot represent all of the population. A larger survey involving more SNS users may be useful.Practical implications: The results have provided some theoretical basis for promoting knowledge contribution and user viscosity.Originality/value: Few studies have investigated the impact of social influence and user habits on knowledge contribution behavior of SNS users. This study can make a theoretical contribution by examining how the social influence processes and habits affect one's knowledge contribution behavior using online communities.展开更多
基金sponsored by the National Natural Science Foundation of China under grant number No.61100008,61201084the China Postdoctoral Science Foundation under Grant No.2013M541346+3 种基金Heilongiiang Postdoctoral Special Fund(Postdoctoral Youth Talent Program)under Grant No.LBH-TZ0504Heilongjiang Postdoctoral Fund under Grant No.LBH-Z13058the Natural Science Foundation of Heilongjiang Province of China under Grant No.QC2015076The Fundamental Research Funds for the Central Universities of China under grant number HEUCF100602
文摘The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition.
文摘Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behavioral preferences. The actor-based stochastic models (ABSM) are developed to study the interdependence of social networks and behavior. These methods are efficient and useful for analysis of discrete behaviors, such as drinking and smoking;however, since the behavior evolution function is in an exponential format, the ABSM can generate inconsistent and unrealistic results when the behavior variable is continuous or has a large range, such as hours of television watched or body mass index. To more realistically model continuous behavior variables, we propose a co-evolution process based on a linear model which is consistent over time and has an intuitive interpretation. In the simulation study, we applied the expectation maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to find the maximum likelihood estimate (MLE) of parameter values. Additionally, we show that our assumptions are reasonable using data from the National Longitudinal Study of Adolescent Health (Add Health).
文摘Massive Multiplayer Online Games (MMOG) have attracted millions of players in recent years. In MMOG, players organize themselves voluntarily and fulfill collective tasks together. Because each player can join different activities, one player may show different social relationship with others in different activities. In the paper we proposed the incremental label propagation algorithm to search the cliques accurately and quickly. Then we analyzed community structure characteristics on multi-activities. It's shown that the existing guild organization cannot satisfy the requirements of multi-activities in MMOG, which motivates us to devise new community communication channels and platforms in future.
基金supported by the National Social Science Foundation of China(Grant Nos.:10CTQ010 and 11CTQ038)Wuhan University Development Program for Researchers Born after the 1970s
文摘Purpose: In the Web 2.0 era,leveraging the collective power of user knowledge contributions has become an important part of the study of collective intelligence. This research aims to investigate the factors which influence knowledge contribution behavior of social networking sites(SNS) users.Design/methodology/approach: The data were obtained from an online survey of 251 social networking sites users. Structural equation modeling analysis was used to validate the proposed model.Findings: Our survey shows that the individuals' motivation for knowledge contribution,their capability of contributing knowledge,interpersonal trust and their own habits positively influence their knowledge contribution behavior,but reward does not significantly influence knowledge contribution in the online virtual community.Research limitations: Respondents of our online survey are mainly undergraduate and graduate students. A limited sample group cannot represent all of the population. A larger survey involving more SNS users may be useful.Practical implications: The results have provided some theoretical basis for promoting knowledge contribution and user viscosity.Originality/value: Few studies have investigated the impact of social influence and user habits on knowledge contribution behavior of SNS users. This study can make a theoretical contribution by examining how the social influence processes and habits affect one's knowledge contribution behavior using online communities.