期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Predicting Users’ Latent Suicidal Risk in Social Media: An Ensemble Model Based on Social Network Relationships
1
作者 Xiuyang Meng Chunling Wang +3 位作者 Jingran Yang Mairui Li Yue Zhang Luo Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4259-4281,共23页
Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in ... Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences. 展开更多
关键词 Suicide risk prediction social media social network relationships Weibo Tree Hole deep learning
下载PDF
Bibliometric analysis of subject trends and knowledge structures of gut microbiota 被引量:2
2
作者 Yuan-Yi Yue Xin-Yue Fan +6 位作者 Qiang Zhang Yi-Ping Lu Si Wu Shuang Wang Miao Yu Chang-Wan Cui Zheng-Rong Sun 《World Journal of Clinical Cases》 SCIE 2020年第13期2817-2832,共16页
BACKGROUND Gut microbiota is an emerging field of research,with related research having breakthrough development in the past 15 years.Bibliometric analysis can be applied to analyze the evolutionary trends and emergin... BACKGROUND Gut microbiota is an emerging field of research,with related research having breakthrough development in the past 15 years.Bibliometric analysis can be applied to analyze the evolutionary trends and emerging hotspots in this field.AIM To study the subject trends and knowledge structures of gut microbiota related research fields from 2004 to 2018.METHODS The literature data on gut microbiota were identified and downloaded from the PubMed database.Through biclustering analysis,strategic diagrams,and social network analysis diagrams,the main trend and knowledge structure of research fields concerning gut microbiota were analyzed to obtain and compare the research hotspots in each period.RESULTS According to the strategic coordinates and social relationship network map,Clostridium Infections/microbiology,Clostridium Infections/therapy,RNA,Ribosomal,16S/genetics,Microbiota/genetics,Microbiota/immunology,Dysbiosis/immunology,Infla-mmation/immunology,Fecal Microbiota Transplantation/methods,Fecal Microbiota Transplantation can be used as an emerging research hotspot in the past 5 years(2014-2018).CONCLUSION Some subjects were not yet fully studied according to the strategic coordinates;and the emerging hotspots in the social network map can be considered as directions of future research. 展开更多
关键词 Gut microbiota Bibliometric analysis Co-word analysis Strategic coordinates social relationship network analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部