Objective:Network analysis was used to explore the complex inter-relationships between social participation activities and depressive symptoms among the Chinese older population,and the differences in network structur...Objective:Network analysis was used to explore the complex inter-relationships between social participation activities and depressive symptoms among the Chinese older population,and the differences in network structures among different genders,age groups,and urban-rural residency would be compared.Methods:Based on the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey(CLHLS),12,043 people aged 65 to 105 were included.The 10-item Center for Epidemiologic Studies Depression(CESD)Scale was used to assess depressive symptoms and 10 types of social participation activities were collected,including housework,tai-chi,square dancing,visiting and interacting with friends,garden work,reading newspapers or books,raising domestic animals,playing cards or mahjong,watching TV or listening to radio,and organized social activities.R 4.2.1 software was used to estimate the network model and calculate strength and bridge strength.Results:21.60%(2,601/12,043)of the participants had depressive symptoms.The total social participation score was negatively associated with depressive symptoms after adjusting for sociodemographic factors.The network of social participation and depressive symptoms showed that“D9(Inability to get going)”and“S9(Watching TV and/or listening to the radio)”had the highest strength within depressive symptoms and social participation communities,respectively,and“S1(Housework)”,“S9(Watching TV and/or listening to the radio)”,and“D5(Hopelessness)”were the most prominent bridging nodes between the two communities.Most edges linking the two communities were negative.“S5(Graden work)-D5(Hopelessness)”and“S6(Reading newspapers/books)-D4(Everything was an effort)”were the top 2 strongest negative edges.Older females had significantly denser network structures than older males.Compared to older people aged 65e80,the age group 81e105 showed higher network global strength.Conclusions:This study provides novel insights into the complex relationships between social participation and depressive symptoms.Except for doing housework,other social participation activities were found to be protective for depression levels.Different nursing strategies should be taken to prevent and alleviate depressive symptoms for different genders and older people of different ages.展开更多
Social Network Theory and methods have emerged as pivotal tools for dissecting intricate interdisciplinary issues in rural communities.This study aims to systematically delineate the application characteristics and tr...Social Network Theory and methods have emerged as pivotal tools for dissecting intricate interdisciplinary issues in rural communities.This study aims to systematically delineate the application characteristics and trends of Social Network Analysis(SNA)in rural community research.Using a twofold approach,we integrate a traditional literature review and CiteSpace bibliometric analysis to assess the application status and evolutionary trends of SNA methods in this context.The key findings include the following:①Chinese research trends:scholars predominantly concentrate on the“three rural”issues(related to agriculture,rural areas,and small-scale farmers)and social support mechanisms for vulnerable rural populations.With policy shifts,rural revitalization,tourism,governance,social trust,and multi-dimensional poverty are poised to emerge as hot topics for the future.For further refinement,we suggest that the application of SNA in rural community research could benefit from content expansion,long-term studies,and innovative modelling techniques.②Research by international scholars has been primarily directed toward the physical and mental health of rural residents,as well as socioeconomic issues.Despite these studies covering a range of typical cases across various nations,a conspicuous lack of thorough,systematic,and prolonged efforts focused on rural community development in specific regions remains.Additionally,health issues affecting rural residents are expected to sustain long-standing and focused international academic attention.This study contributes to a more nuanced understanding of the current applications and potential future directions of SNA in rural community studies,both in China and internationally.展开更多
There are currently many approaches to identify the community structure of a network, but relatively few specific to detect overlapping community structures. Likewise, there are few networks with ground truth overlapp...There are currently many approaches to identify the community structure of a network, but relatively few specific to detect overlapping community structures. Likewise, there are few networks with ground truth overlapping nodes. For this reason,we introduce a new network, Pilgrim, with known overlapping nodes, and a new genetic algorithm for detecting such nodes. Pilgrim is comprised of a variety of structures including two communities with dense overlap,which is common in real social structures. This study initially explores the potential of the community detection algorithm LabelRank for consistent overlap detection;however, the deterministic nature of this algorithm restricts it to very few candidate solutions. Therefore, we propose a genetic algorithm using a restricted edge-based clustering technique to detect overlapping communities by maximizing an efficient overlapping modularity function. The proposed restriction to the edge-based representation precludes the possibility of disjoint communities, thereby, dramatically reducing the search space and decreasing the number of generations required to produce an optimal solution. A tunable parameterr allows the strictness of the definition of overlap to be adjusted allowing for refinement in the number of identified overlapping nodes. Our method, tested on several real social networks, yields results comparable to the most effective overlapping community detection algorithms to date.展开更多
Graphs are used in various disciplines such as telecommunication,biological networks,as well as social networks.In large-scale networks,it is challenging to detect the communities by learning the distinct properties o...Graphs are used in various disciplines such as telecommunication,biological networks,as well as social networks.In large-scale networks,it is challenging to detect the communities by learning the distinct properties of the graph.As deep learning hasmade contributions in a variety of domains,we try to use deep learning techniques to mine the knowledge from large-scale graph networks.In this paper,we aim to provide a strategy for detecting communities using deep autoencoders and obtain generic neural attention to graphs.The advantages of neural attention are widely seen in the field of NLP and computer vision,which has low computational complexity for large-scale graphs.The contributions of the paper are summarized as follows.Firstly,a transformer is utilized to downsample the first-order proximities of the graph into a latent space,which can result in the structural properties and eventually assist in detecting the communities.Secondly,the fine-tuning task is conducted by tuning variant hyperparameters cautiously,which is applied to multiple social networks(Facebook and Twitch).Furthermore,the objective function(crossentropy)is tuned by L0 regularization.Lastly,the reconstructed model forms communities that present the relationship between the groups.The proposed robust model provides good generalization and is applicable to obtaining not only the community structures in social networks but also the node classification.The proposed graph-transformer shows advanced performance on the social networks with the average NMIs of 0.67±0.04,0.198±0.02,0.228±0.02,and 0.68±0.03 on Wikipedia crocodiles,Github Developers,Twitch England,and Facebook Page-Page networks,respectively.展开更多
Entrepreneurship corporate social responsibility is concerned with obligations that should be undertaken by an enterprise or "enterprise citizen" to the society including interrelationship between enterprise and som...Entrepreneurship corporate social responsibility is concerned with obligations that should be undertaken by an enterprise or "enterprise citizen" to the society including interrelationship between enterprise and some related interest dependents. And it is a sense of value, discipline and respect to the people, community and environment-related policies of the enterprise. Obviously, the core of the notion refers to a commitment of the enterprise in order to improve living standard of related interest counterparts. Nowadays, entrepreneurship corporate social responsibility has been not only an ethical call, but also an institutional constraint. The consensus is that in operation process an enterprise should take into account of its economic, social and ethical effects on consumers, staffs, shareholders, communities, local governments and environment and make a better prospect to them. Based on this point of view, by field work and questionnaire method, this paper discusses specifically the interaction between TNCs' R&D activities and local development of the Pudong New Area, a China's largest special economic zone in Shanghai to explore dynamics of the TNCs' R&D activities, growth of the local economy and their roles in promoting flexible innovation networks for sustainable futures. This involves: a. notion of the entrepreneurship corporate social responsibility; b. current state and trend of TNCs' R&D activities; c. mode and linkage tightness between TNCs' R&D activities and the local economy; d. main problems of the TNCs' R&D activities in Pudong; e. the context of flexible innovation networks; and f. manner and ways in creation of flexible innovation networks.展开更多
Currently, the collaboration in scientific communities has been studied in order to explain, among other things, the knowledge diffusion. The quality of Graduate Programmes is often associated with the scientific coll...Currently, the collaboration in scientific communities has been studied in order to explain, among other things, the knowledge diffusion. The quality of Graduate Programmes is often associated with the scientific collaboration. This paper discusses how scientific collaboration processes can be identified and characterized through social and complex networks. For this purpose, collaboration networks of bibliographic production, research projects, and committees of PhD theses and Masters’ dissertations by researchers from a graduate program in computational modeling were studied. The data were obtained from CAPES’ reports of the period from 2001 to 2009. Among the studied indices, centrality indices indicate the presence of prominent researchers who influence others and promptly interact with other researchers in the network. The indices of complex networks reveal the presence of the small-world (i.e. these networks are favorable to increase coordination between researchers) phenomenon and indicate a behavior of scale-free degree distribution (i.e. some researchers promote clustering more than others) for one of the studied networks.展开更多
We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwi...We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.展开更多
Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph ...Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks.展开更多
The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is sprea...The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.展开更多
With the emergence and development of social networks,people can stay in touch with friends,family,and colleagues more quickly and conveniently,regardless of their location.This ubiquitous digital internet environment...With the emergence and development of social networks,people can stay in touch with friends,family,and colleagues more quickly and conveniently,regardless of their location.This ubiquitous digital internet environment has also led to large-scale disclosure of personal privacy.Due to the complexity and subtlety of sensitive information,traditional sensitive information identification technologies cannot thoroughly address the characteristics of each piece of data,thus weakening the deep connections between text and images.In this context,this paper adopts the CLIP model as a modality discriminator.By using comparative learning between sensitive image descriptions and images,the similarity between the images and the sensitive descriptions is obtained to determine whether the images contain sensitive information.This provides the basis for identifying sensitive information using different modalities.Specifically,if the original data does not contain sensitive information,only single-modality text-sensitive information identification is performed;if the original data contains sensitive information,multimodality sensitive information identification is conducted.This approach allows for differentiated processing of each piece of data,thereby achieving more accurate sensitive information identification.The aforementioned modality discriminator can address the limitations of existing sensitive information identification technologies,making the identification of sensitive information from the original data more appropriate and precise.展开更多
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
This article explores the use of social networks by workers in Abidjan, Côte d’Ivoire, with particular emphasis on a descriptive or quantitative analysis aimed at understanding motivations and methods of use. Mo...This article explores the use of social networks by workers in Abidjan, Côte d’Ivoire, with particular emphasis on a descriptive or quantitative analysis aimed at understanding motivations and methods of use. More than five hundred and fifty questionnaires were distributed, highlighting workers’ preferred digital channels and platforms. The results indicate that the majority use social media through their mobile phones, with WhatsApp being the most popular app, followed by Facebook and LinkedIn. The study reveals that workers use social media for entertainment purposes and to develop professional and social relationships, with 55% unable to live without social media at work for recreational activities. In addition, 35% spend on average 1 to 2 hours on social networks, mainly between 12 p.m. and 2 p.m. It also appears that 46% believe that social networks moderately improve their productivity. These findings can guide marketing strategies, training, technology development and government policies related to the use of social media in the workplace.展开更多
This paper is devoted to analyze and model user reading and replying activities in a bulletin board system (BBS) social network. By analyzing the data set from a famous Chinese BBS social network, we show how some u...This paper is devoted to analyze and model user reading and replying activities in a bulletin board system (BBS) social network. By analyzing the data set from a famous Chinese BBS social network, we show how some user activities distribute, and reveal several important features that might characterize user dynamics. We propose a method to model user activities in the BBS social network. The model could reproduce power-law and non-power-law distributions of user activities at the same time. Our results show that user reading and replying activities could be simulated through simple agent-based models. Specifically, manners of how the BBS server interacts with Internet users in the Web 2.0 application, how users organize their reading lists, and how user behavioral trait distributes are the important factors in the formation of activity patterns.展开更多
The advent of the age of Information shifts the environment we live in from off-line to on-line. The prospect of Collective Intelligence (CI) is promising. Based on this background, the aim of this paper is to discove...The advent of the age of Information shifts the environment we live in from off-line to on-line. The prospect of Collective Intelligence (CI) is promising. Based on this background, the aim of this paper is to discover the emergence mechanism and influence factors of CI in knowledge communities using the method of quantitative and qualitative analysis. On the basis of the previous research work, our model theorizes that the two dimensions of social network (i.e., interactive network structure and participant’s characteristics) affect two references of effectiveness (i.e. group knowledge production and participation of group decision). And this hypothetical model is validated with simulation data from “Zhihu” community. Our model has been useful since it offers some inspirations and directions to promote the level of CI in knowledge communities.展开更多
In social data analytics,Virtual Community(VC)detection is a primary challenge in discovering user relationships and enhancing social recommenda-tions.VC formation is used for personal interaction between communities....In social data analytics,Virtual Community(VC)detection is a primary challenge in discovering user relationships and enhancing social recommenda-tions.VC formation is used for personal interaction between communities.But the usual methods didn’t find the Suspicious Behaviour(SB)needed to make a VC.The Generalized Jaccard Suspicious Behavior Similarity-based Recurrent Deep Neural Network Classification and Ranking(GJSBS-RDNNCR)Model addresses these issues.The GJSBS-RDNNCR model comprises four layers for VC formation in Social Networks(SN).In the GJSBS-RDNNCR model,the SN is given as an input at the input layer.After that,the User’s Behaviors(UB)are extracted in the first Hidden Layer(HL),and the Generalized Jaccard Similarity coefficient calculates the similarity value at the second HL based on the SB.In the third HL,the similarity values are examined,and SB tendency is classified using the Activation Function(AF)in the Output Layer(OL).Finally,the ranking process is performed with classified users in SN and their SB.Results analysis is performed with metrics such as Classification Accuracy(CA),Time Complexity(TC),and False Positive Rate(FPR).The experimental setup consid-ers 250 tweet users from the dataset to identify the SBs of users.展开更多
This research uses random networks as benchmarks for inferential tests of network structures. Specifically, we develop formulas for expected values and confidence intervals for four frequently employed social network ...This research uses random networks as benchmarks for inferential tests of network structures. Specifically, we develop formulas for expected values and confidence intervals for four frequently employed social network centrality indices. The first study begins with analyses of stylized networks, which are then perturbed with increasing levels of random noise. When the indices achieve their values for fully random networks, the indices reveal systematic relationships that generalize across network forms. The second study then delves into the relationships between numbers of actors in a network and the density of a network for each of the centrality indices. In doing so, expected values are easily calculated, which in turn enable chi-square tests of network structure. Furthermore, confidence intervals are developed to facilitate a network analyst’s understanding as to which patterns in the data are merely random, versus which are structurally significantly distinct.展开更多
With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the us...With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the users and inject massive malicious activities that pose a crucial security threat to the original user.However,the attackers also target this height of OSN utilization,explicitly creating the clones of the user’s account.Various clone detection mechanisms are designed based on social-network activities.For instance,monitoring the occur-rence of clone edges is done to restrict the generation of clone activities.However,this assumption is unsuitable for a real-time environment and works optimally during the simulation process.This research concentrates on modeling and effi-cient clone prediction and avoidance methods to help the social network activists and the victims enhance the clone prediction accuracy.This model does not rely on assumptions.Here,an ensemble Adaptive Random Subspace is used for clas-sifying the clone victims with k-Nearest Neighbour(k-NN)as a base classifier.The weighted clone nodes are analysed using the weighted graph theory concept based on the classified results.When the weighted node’s threshold value is high-er,the trust establishment is terminated,and the clones are ranked and sorted in the higher place for termination.Thus,the victims are alert to the clone propaga-tion over the online social networking end,and the validation is done using the MATLAB 2020a simulation environment.The model shows a better trade-off than existing approaches like Random Forest(RF),Naïve Bayes(NB),and the standard graph model.Various performance metrics like True Positive Rate(TPR),False Alarm Rate(FAR),Recall,Precision,F-measure,and ROC and run time analysis are evaluated to show the significance of the model.展开更多
Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understand...Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.展开更多
Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in ...Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.展开更多
Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at t...Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time.展开更多
基金supported by the National Key Research and Development Plan Project(grant number:2022YFC3600904)The funding organization had no role in the survey’s design,implementation,and analysis.
文摘Objective:Network analysis was used to explore the complex inter-relationships between social participation activities and depressive symptoms among the Chinese older population,and the differences in network structures among different genders,age groups,and urban-rural residency would be compared.Methods:Based on the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey(CLHLS),12,043 people aged 65 to 105 were included.The 10-item Center for Epidemiologic Studies Depression(CESD)Scale was used to assess depressive symptoms and 10 types of social participation activities were collected,including housework,tai-chi,square dancing,visiting and interacting with friends,garden work,reading newspapers or books,raising domestic animals,playing cards or mahjong,watching TV or listening to radio,and organized social activities.R 4.2.1 software was used to estimate the network model and calculate strength and bridge strength.Results:21.60%(2,601/12,043)of the participants had depressive symptoms.The total social participation score was negatively associated with depressive symptoms after adjusting for sociodemographic factors.The network of social participation and depressive symptoms showed that“D9(Inability to get going)”and“S9(Watching TV and/or listening to the radio)”had the highest strength within depressive symptoms and social participation communities,respectively,and“S1(Housework)”,“S9(Watching TV and/or listening to the radio)”,and“D5(Hopelessness)”were the most prominent bridging nodes between the two communities.Most edges linking the two communities were negative.“S5(Graden work)-D5(Hopelessness)”and“S6(Reading newspapers/books)-D4(Everything was an effort)”were the top 2 strongest negative edges.Older females had significantly denser network structures than older males.Compared to older people aged 65e80,the age group 81e105 showed higher network global strength.Conclusions:This study provides novel insights into the complex relationships between social participation and depressive symptoms.Except for doing housework,other social participation activities were found to be protective for depression levels.Different nursing strategies should be taken to prevent and alleviate depressive symptoms for different genders and older people of different ages.
基金funded by the National Science Foundation of China [Grant No.42071200]Second Tibetan Plateau Scientific Expedition and Research Program [Grant No.2019QZKK0902]the Western China Youth Scholars Project under the Western Light Talent Training and Recruitment Program of the Chinese Academy of Sciences.
文摘Social Network Theory and methods have emerged as pivotal tools for dissecting intricate interdisciplinary issues in rural communities.This study aims to systematically delineate the application characteristics and trends of Social Network Analysis(SNA)in rural community research.Using a twofold approach,we integrate a traditional literature review and CiteSpace bibliometric analysis to assess the application status and evolutionary trends of SNA methods in this context.The key findings include the following:①Chinese research trends:scholars predominantly concentrate on the“three rural”issues(related to agriculture,rural areas,and small-scale farmers)and social support mechanisms for vulnerable rural populations.With policy shifts,rural revitalization,tourism,governance,social trust,and multi-dimensional poverty are poised to emerge as hot topics for the future.For further refinement,we suggest that the application of SNA in rural community research could benefit from content expansion,long-term studies,and innovative modelling techniques.②Research by international scholars has been primarily directed toward the physical and mental health of rural residents,as well as socioeconomic issues.Despite these studies covering a range of typical cases across various nations,a conspicuous lack of thorough,systematic,and prolonged efforts focused on rural community development in specific regions remains.Additionally,health issues affecting rural residents are expected to sustain long-standing and focused international academic attention.This study contributes to a more nuanced understanding of the current applications and potential future directions of SNA in rural community studies,both in China and internationally.
文摘There are currently many approaches to identify the community structure of a network, but relatively few specific to detect overlapping community structures. Likewise, there are few networks with ground truth overlapping nodes. For this reason,we introduce a new network, Pilgrim, with known overlapping nodes, and a new genetic algorithm for detecting such nodes. Pilgrim is comprised of a variety of structures including two communities with dense overlap,which is common in real social structures. This study initially explores the potential of the community detection algorithm LabelRank for consistent overlap detection;however, the deterministic nature of this algorithm restricts it to very few candidate solutions. Therefore, we propose a genetic algorithm using a restricted edge-based clustering technique to detect overlapping communities by maximizing an efficient overlapping modularity function. The proposed restriction to the edge-based representation precludes the possibility of disjoint communities, thereby, dramatically reducing the search space and decreasing the number of generations required to produce an optimal solution. A tunable parameterr allows the strictness of the definition of overlap to be adjusted allowing for refinement in the number of identified overlapping nodes. Our method, tested on several real social networks, yields results comparable to the most effective overlapping community detection algorithms to date.
基金The research is funded by the Researchers Supporting Project at King Saud University(Project#RSP-2021/305).
文摘Graphs are used in various disciplines such as telecommunication,biological networks,as well as social networks.In large-scale networks,it is challenging to detect the communities by learning the distinct properties of the graph.As deep learning hasmade contributions in a variety of domains,we try to use deep learning techniques to mine the knowledge from large-scale graph networks.In this paper,we aim to provide a strategy for detecting communities using deep autoencoders and obtain generic neural attention to graphs.The advantages of neural attention are widely seen in the field of NLP and computer vision,which has low computational complexity for large-scale graphs.The contributions of the paper are summarized as follows.Firstly,a transformer is utilized to downsample the first-order proximities of the graph into a latent space,which can result in the structural properties and eventually assist in detecting the communities.Secondly,the fine-tuning task is conducted by tuning variant hyperparameters cautiously,which is applied to multiple social networks(Facebook and Twitch).Furthermore,the objective function(crossentropy)is tuned by L0 regularization.Lastly,the reconstructed model forms communities that present the relationship between the groups.The proposed robust model provides good generalization and is applicable to obtaining not only the community structures in social networks but also the node classification.The proposed graph-transformer shows advanced performance on the social networks with the average NMIs of 0.67±0.04,0.198±0.02,0.228±0.02,and 0.68±0.03 on Wikipedia crocodiles,Github Developers,Twitch England,and Facebook Page-Page networks,respectively.
文摘Entrepreneurship corporate social responsibility is concerned with obligations that should be undertaken by an enterprise or "enterprise citizen" to the society including interrelationship between enterprise and some related interest dependents. And it is a sense of value, discipline and respect to the people, community and environment-related policies of the enterprise. Obviously, the core of the notion refers to a commitment of the enterprise in order to improve living standard of related interest counterparts. Nowadays, entrepreneurship corporate social responsibility has been not only an ethical call, but also an institutional constraint. The consensus is that in operation process an enterprise should take into account of its economic, social and ethical effects on consumers, staffs, shareholders, communities, local governments and environment and make a better prospect to them. Based on this point of view, by field work and questionnaire method, this paper discusses specifically the interaction between TNCs' R&D activities and local development of the Pudong New Area, a China's largest special economic zone in Shanghai to explore dynamics of the TNCs' R&D activities, growth of the local economy and their roles in promoting flexible innovation networks for sustainable futures. This involves: a. notion of the entrepreneurship corporate social responsibility; b. current state and trend of TNCs' R&D activities; c. mode and linkage tightness between TNCs' R&D activities and the local economy; d. main problems of the TNCs' R&D activities in Pudong; e. the context of flexible innovation networks; and f. manner and ways in creation of flexible innovation networks.
基金financial support from CNPq(the Brazilian federal grant agency).
文摘Currently, the collaboration in scientific communities has been studied in order to explain, among other things, the knowledge diffusion. The quality of Graduate Programmes is often associated with the scientific collaboration. This paper discusses how scientific collaboration processes can be identified and characterized through social and complex networks. For this purpose, collaboration networks of bibliographic production, research projects, and committees of PhD theses and Masters’ dissertations by researchers from a graduate program in computational modeling were studied. The data were obtained from CAPES’ reports of the period from 2001 to 2009. Among the studied indices, centrality indices indicate the presence of prominent researchers who influence others and promptly interact with other researchers in the network. The indices of complex networks reveal the presence of the small-world (i.e. these networks are favorable to increase coordination between researchers) phenomenon and indicate a behavior of scale-free degree distribution (i.e. some researchers promote clustering more than others) for one of the studied networks.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12072340)the China Postdoctoral Science Foundation(Grant No.2022M720727)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB130).
文摘We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 62273272,62303375 and 61873277in part by the Key Research and Development Program of Shaanxi Province under Grant 2023-YBGY-243+2 种基金in part by the Natural Science Foundation of Shaanxi Province under Grants 2022JQ-606 and 2020-JQ758in part by the Research Plan of Department of Education of Shaanxi Province under Grant 21JK0752in part by the Youth Innovation Team of Shaanxi Universities.
文摘Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks.
基金supported by the National Social Science Fund of China (Grant No.23BGL270)。
文摘The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.
基金supported by the National Natural Science Foundation of China(No.62302540),with author Fangfang Shan for more information,please visit their website at https://www.nsfc.gov.cn/(accessed on 05 June 2024)Additionally,it is also funded by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020),where Fangfang Shan is an author.Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/(accessed on 05 June 2024)the Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422),and for more information,you can visit https://kjt.henan.gov.cn(accessed on 05 June 2024).
文摘With the emergence and development of social networks,people can stay in touch with friends,family,and colleagues more quickly and conveniently,regardless of their location.This ubiquitous digital internet environment has also led to large-scale disclosure of personal privacy.Due to the complexity and subtlety of sensitive information,traditional sensitive information identification technologies cannot thoroughly address the characteristics of each piece of data,thus weakening the deep connections between text and images.In this context,this paper adopts the CLIP model as a modality discriminator.By using comparative learning between sensitive image descriptions and images,the similarity between the images and the sensitive descriptions is obtained to determine whether the images contain sensitive information.This provides the basis for identifying sensitive information using different modalities.Specifically,if the original data does not contain sensitive information,only single-modality text-sensitive information identification is performed;if the original data contains sensitive information,multimodality sensitive information identification is conducted.This approach allows for differentiated processing of each piece of data,thereby achieving more accurate sensitive information identification.The aforementioned modality discriminator can address the limitations of existing sensitive information identification technologies,making the identification of sensitive information from the original data more appropriate and precise.
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
文摘This article explores the use of social networks by workers in Abidjan, Côte d’Ivoire, with particular emphasis on a descriptive or quantitative analysis aimed at understanding motivations and methods of use. More than five hundred and fifty questionnaires were distributed, highlighting workers’ preferred digital channels and platforms. The results indicate that the majority use social media through their mobile phones, with WhatsApp being the most popular app, followed by Facebook and LinkedIn. The study reveals that workers use social media for entertainment purposes and to develop professional and social relationships, with 55% unable to live without social media at work for recreational activities. In addition, 35% spend on average 1 to 2 hours on social networks, mainly between 12 p.m. and 2 p.m. It also appears that 46% believe that social networks moderately improve their productivity. These findings can guide marketing strategies, training, technology development and government policies related to the use of social media in the workplace.
基金supported in part by the National Natural Science Foundation of China under Grant No. 60972010the Beijing Natural Science Foundation under Grant No. 4102047+1 种基金the Major Program for Research on Philosophy & Humanity Social Sciences of the Ministry of Education of China under Grant No. 08WL1101the Service Business of Scientists and Engineers Project under Grant No. 2009GJA00048
文摘This paper is devoted to analyze and model user reading and replying activities in a bulletin board system (BBS) social network. By analyzing the data set from a famous Chinese BBS social network, we show how some user activities distribute, and reveal several important features that might characterize user dynamics. We propose a method to model user activities in the BBS social network. The model could reproduce power-law and non-power-law distributions of user activities at the same time. Our results show that user reading and replying activities could be simulated through simple agent-based models. Specifically, manners of how the BBS server interacts with Internet users in the Web 2.0 application, how users organize their reading lists, and how user behavioral trait distributes are the important factors in the formation of activity patterns.
文摘The advent of the age of Information shifts the environment we live in from off-line to on-line. The prospect of Collective Intelligence (CI) is promising. Based on this background, the aim of this paper is to discover the emergence mechanism and influence factors of CI in knowledge communities using the method of quantitative and qualitative analysis. On the basis of the previous research work, our model theorizes that the two dimensions of social network (i.e., interactive network structure and participant’s characteristics) affect two references of effectiveness (i.e. group knowledge production and participation of group decision). And this hypothetical model is validated with simulation data from “Zhihu” community. Our model has been useful since it offers some inspirations and directions to promote the level of CI in knowledge communities.
文摘In social data analytics,Virtual Community(VC)detection is a primary challenge in discovering user relationships and enhancing social recommenda-tions.VC formation is used for personal interaction between communities.But the usual methods didn’t find the Suspicious Behaviour(SB)needed to make a VC.The Generalized Jaccard Suspicious Behavior Similarity-based Recurrent Deep Neural Network Classification and Ranking(GJSBS-RDNNCR)Model addresses these issues.The GJSBS-RDNNCR model comprises four layers for VC formation in Social Networks(SN).In the GJSBS-RDNNCR model,the SN is given as an input at the input layer.After that,the User’s Behaviors(UB)are extracted in the first Hidden Layer(HL),and the Generalized Jaccard Similarity coefficient calculates the similarity value at the second HL based on the SB.In the third HL,the similarity values are examined,and SB tendency is classified using the Activation Function(AF)in the Output Layer(OL).Finally,the ranking process is performed with classified users in SN and their SB.Results analysis is performed with metrics such as Classification Accuracy(CA),Time Complexity(TC),and False Positive Rate(FPR).The experimental setup consid-ers 250 tweet users from the dataset to identify the SBs of users.
文摘This research uses random networks as benchmarks for inferential tests of network structures. Specifically, we develop formulas for expected values and confidence intervals for four frequently employed social network centrality indices. The first study begins with analyses of stylized networks, which are then perturbed with increasing levels of random noise. When the indices achieve their values for fully random networks, the indices reveal systematic relationships that generalize across network forms. The second study then delves into the relationships between numbers of actors in a network and the density of a network for each of the centrality indices. In doing so, expected values are easily calculated, which in turn enable chi-square tests of network structure. Furthermore, confidence intervals are developed to facilitate a network analyst’s understanding as to which patterns in the data are merely random, versus which are structurally significantly distinct.
文摘With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the users and inject massive malicious activities that pose a crucial security threat to the original user.However,the attackers also target this height of OSN utilization,explicitly creating the clones of the user’s account.Various clone detection mechanisms are designed based on social-network activities.For instance,monitoring the occur-rence of clone edges is done to restrict the generation of clone activities.However,this assumption is unsuitable for a real-time environment and works optimally during the simulation process.This research concentrates on modeling and effi-cient clone prediction and avoidance methods to help the social network activists and the victims enhance the clone prediction accuracy.This model does not rely on assumptions.Here,an ensemble Adaptive Random Subspace is used for clas-sifying the clone victims with k-Nearest Neighbour(k-NN)as a base classifier.The weighted clone nodes are analysed using the weighted graph theory concept based on the classified results.When the weighted node’s threshold value is high-er,the trust establishment is terminated,and the clones are ranked and sorted in the higher place for termination.Thus,the victims are alert to the clone propaga-tion over the online social networking end,and the validation is done using the MATLAB 2020a simulation environment.The model shows a better trade-off than existing approaches like Random Forest(RF),Naïve Bayes(NB),and the standard graph model.Various performance metrics like True Positive Rate(TPR),False Alarm Rate(FAR),Recall,Precision,F-measure,and ROC and run time analysis are evaluated to show the significance of the model.
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research–Shanghai Jiao Tong University.
文摘Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.
基金funded by Outstanding Youth Team Project of Central Universities(QNTD202308).
文摘Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.
基金supported in part by the Slovenian Research Agency(VB,research program P1-0294)(VB,research project J5-2557)+2 种基金(VB,research project J5-4596)COST EU(VB,COST action CA21163(HiTEc)is prepared within the framework of the HSE University Basic Research Program.
文摘Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time.