An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the ped...An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source.展开更多
The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is sprea...The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.展开更多
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate p...The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate problematic social media,and their potential is yet to be fully realized.Emerging large language models(LLMs)are becoming increasingly popular for providing information and assistance to people and are being applied in many aspects of life.In mitigating problematic social media use,LLMs such as ChatGPT can play a positive role by serving as conversational partners and outlets for users,providing personalized information and resources,monitoring and intervening in problematic social media use,and more.In this process,we should recognize both the enormous potential and endless possibilities of LLMs such as ChatGPT,leveraging their advantages to better address problematic social media use,while also acknowledging the limitations and potential pitfalls of ChatGPT technology,such as errors,limitations in issue resolution,privacy and security concerns,and potential overreliance.When we leverage the advantages of LLMs to address issues in social media usage,we must adopt a cautious and ethical approach,being vigilant of the potential adverse effects that LLMs may have in addressing problematic social media use to better harness technology to serve individuals and society.展开更多
BACKGROUND Depression is a prevalent psychological issue in adolescents that is significantly related to negative life events(NLEs)and dysfunctional attitudes.High levels of social support can significantly buffer NLE...BACKGROUND Depression is a prevalent psychological issue in adolescents that is significantly related to negative life events(NLEs)and dysfunctional attitudes.High levels of social support can significantly buffer NLEs’effect on depression.Currently,there is limited research on how social support moderates the relationship between NLEs,dysfunctional attitudes,and depression in adolescents in China.It is imperative to investigate this moderating effect to mitigate dysfunctional attitudes in adolescent undergoing depressive mood,ultimately enhancing their overall mental health.AIM To investigate the relationship and underlying mechanisms between specific dysfunctional attitudes,social support,and depression among Chinese adolescents.METHODS This is a cross-sectional study which selected five middle schools in Shandong Province for investigation in March 2022.Participants included 795 adolescents(49.87%male,mage=15.15,SD=1.84,age range=11-18 years old).All participants completed the Dysfunctional Attitude Scale,Adolescent Life Event Scale,Beck Depression Inventory,and Social Support Rating Scale.A moderated mediation model was conducted to examine the relationship between specific dysfunctional attitudes,social support,and depression.RESULTS Results indicated that NLEs affected depression through the mediating role of specific dysfunctional attitudes(autonomy attitudesβ=0.21;perfectionismβ=0.25).Moreover,social support was found to moderate the mediating effect between NLEs,specific dysfunctional attitudes,and depressive symptoms(autonomy attitudes b2=-0.08;perfectionism b2=-0.09).CONCLUSION Dysfunctional attitudes mediated and social support moderated the relationship between NLEs and depression.Social support can buffer depression symptoms among adolescents with autonomy attitudes and perfectionism.展开更多
It is a complex and important topic to study the linkage mechanism of government audit,social audit,and internal audit in the context of China’s high-quality economic development.The implementation of measures,such a...It is a complex and important topic to study the linkage mechanism of government audit,social audit,and internal audit in the context of China’s high-quality economic development.The implementation of measures,such as establishing a sound and perfect organizational safeguard mechanism,strengthening project collaborative audit mechanism,enhancing the mechanism for utilizing audit results,and establishing an audit and rectification joint mechanism can promote the efficient operation of the audit supervision system and the high-quality development of audit services.展开更多
The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation mo...The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.展开更多
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ...Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.展开更多
Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship am...Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.展开更多
It is commonly accepted that, on social networks, the opinion of the agents with a higher connectivity, i.e., a larger number of followers, results in more convincing than that of the agents with a lower number of fol...It is commonly accepted that, on social networks, the opinion of the agents with a higher connectivity, i.e., a larger number of followers, results in more convincing than that of the agents with a lower number of followers. By kinetic modeling approach, a kinetic model of opinion formation on social networks is derived, in which the distribution function depends on both the opinion and the connectivity of the agents. The opinion exchange process is governed by a Sznajd type model with three opinions, ±1, 0, and the social network is represented statistically with connectivity denoting the number of contacts of a given individual. The asymptotic mean opinion of a social network is determined in terms of the initial opinion and the connectivity of the agents.展开更多
With the penetration of the Internet, virtual groups have become more and more popular. The reliability and accuracy of interpersonal perception in the virtual environment is an intriguing issue. Using the Social rela...With the penetration of the Internet, virtual groups have become more and more popular. The reliability and accuracy of interpersonal perception in the virtual environment is an intriguing issue. Using the Social relations model (SRM) [1], this paper investigates interpersonal perception in virtual groups from a multilevel perspective. In particular, it examines the following three areas: homophily, identification, and individual attraction, and explores how much of these directional and dyadic relational evaluations can be attributed to the effect of the actor, the partner, and the relationship.展开更多
Corporate social responsibility is the inevitable requirement for the survival and development of enterprises in modern society,as well as the basic guarantee for the sustainable development of economy and society.In ...Corporate social responsibility is the inevitable requirement for the survival and development of enterprises in modern society,as well as the basic guarantee for the sustainable development of economy and society.In order to analyze the driving factors of corporate social responsibility from both internal and external aspects,the dynamic model of corporate social responsibility was constructed,and the driving strategies of corporate social responsibility were also suggested.The driving factors of corporate social responsibility include not only the external constraints of policies,regulations and stakeholders,but also the internal requirements of the sustainable development of enterprises.Only when the external driving force is transformed into the spontaneous and conscious responsibility behavior of the enterprise,can the enterprise achieve its due effect.Moreover,in order to better fulfill the social responsibility,enterprise should build a management system of social responsibility,enhance the awareness of social responsibility,and promote the effective implementation of social responsibility projects.The relevant department should strengthen the all-round supervision of corporate social responsibility,and further improve the policies,laws and regulations related to social responsibility.Enterprises should strengthen communication with stakeholders,actively disclose social responsibility information,and constantly improve social responsibility behavior.By implementing social responsibility,enterprise can improve its business environment,enhance corporate brand image and core competitiveness,and promote the sustainable development of economy and society.展开更多
Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model int...Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends.展开更多
Social media has revolutionized the dissemination of real-life information,serving as a robust platform for sharing life events.Twitter,characterized by its brevity and continuous flow of posts,has emerged as a crucia...Social media has revolutionized the dissemination of real-life information,serving as a robust platform for sharing life events.Twitter,characterized by its brevity and continuous flow of posts,has emerged as a crucial source for public health surveillance,offering valuable insights into public reactions during the COVID-19 pandemic.This study aims to leverage a range of machine learning techniques to extract pivotal themes and facilitate text classification on a dataset of COVID-19 outbreak-related tweets.Diverse topic modeling approaches have been employed to extract pertinent themes and subsequently form a dataset for training text classification models.An assessment of coherence metrics revealed that the Gibbs Sampling Dirichlet Mixture Model(GSDMM),which utilizes trigram and bag-of-words(BOW)feature extraction,outperformed Non-negative Matrix Factorization(NMF),Latent Dirichlet Allocation(LDA),and a hybrid strategy involving Bidirectional Encoder Representations from Transformers(BERT)combined with LDA and K-means to pinpoint significant themes within the dataset.Among the models assessed for text clustering,the utilization of LDA,either as a clustering model or for feature extraction combined with BERT for K-means,resulted in higher coherence scores,consistent with human ratings,signifying their efficacy.In particular,LDA,notably in conjunction with trigram representation and BOW,demonstrated superior performance.This underscores the suitability of LDA for conducting topic modeling,given its proficiency in capturing intricate textual relationships.In the context of text classification,models such as Linear Support Vector Classification(LSVC),Long Short-Term Memory(LSTM),Bidirectional Long Short-Term Memory(BiLSTM),Convolutional Neural Network with BiLSTM(CNN-BiLSTM),and BERT have shown outstanding performance,achieving accuracy and weighted F1-Score scores exceeding 80%.These results significantly surpassed other models,such as Multinomial Naive Bayes(MNB),Linear Support Vector Machine(LSVM),and Logistic Regression(LR),which achieved scores in the range of 60 to 70 percent.展开更多
Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital w...Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital world. These networks can be viewed as a collection of nodes and edges, where users and their interactions are represented as nodes and the connections between them as edges. Understanding the factors that contribute to the formation of these edges is important for studying network structure and processes. This knowledge can be applied to various areas such as identifying communities, recommending friends, and targeting online advertisements. Several factors, including node popularity and friends-of-friends relationships, influence edge formation and network growth. This research focuses on the temporal activity of nodes and its impact on edge formation. Specifically, the study examines how the minimum age of friends-of-friends edges and the average age of all edges connected to potential target nodes influence the formation of network edges. Discrete choice analysis is used to analyse the combined effect of these temporal factors and other well-known attributes like node degree (i.e., the number of connections a node has) and network distance between nodes. The findings reveal that temporal properties have a similar impact as network proximity in predicting the creation of links. By incorporating temporal features into the models, the accuracy of link prediction can be further improved.展开更多
BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increa...BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.展开更多
This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more ...This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more susceptible to vishing attacks. The proposed Emoti-Shing model analyzes potential victims’ emotions using Hidden Markov Models to track vishing scams by examining the emotional content of phone call audio conversations. This approach aims to detect vishing scams using biological features of humans, specifically emotions, which cannot be easily masked or spoofed. Experimental results on 30 generated emotions indicate the potential for increased vishing scam detection through this approach.展开更多
The Bayesian structural equation model integrates the principles of Bayesian statistics, providing a more flexible and comprehensive modeling framework. In exploring complex relationships between variables, handling u...The Bayesian structural equation model integrates the principles of Bayesian statistics, providing a more flexible and comprehensive modeling framework. In exploring complex relationships between variables, handling uncertainty, and dealing with missing data, the Bayesian structural equation model demonstrates unique advantages. Therefore, Bayesian methods are used in this paper to establish a structural equation model of innovative talent cognition, with the measurement of college students’ cognition of innovative talent being studied. An in-depth analysis is conducted on the effects of innovative self-efficacy, social resources, innovative personality traits, and school education, aiming to explore the factors influencing college students’ innovative talent. The results indicate that innovative self-efficacy plays a key role in perception, social resources are significantly positively correlated with the perception of innovative talents, innovative personality tendencies and school education are positively correlated with the perception of innovative talents, but the impact is not significant.展开更多
The performance of corporate social responsibility is conducive to the con- tinuous improvement of their profitability, and promotes the upgrading of corporation value. However, it is difficult to confirm, calculate a...The performance of corporate social responsibility is conducive to the con- tinuous improvement of their profitability, and promotes the upgrading of corporation value. However, it is difficult to confirm, calculate and check the costs and benefits brought by the implementation of corporate social responsibility under the current ac- counting theory system, so it is difficult to estimate whether the fulfillment of corpo- rate social responsibility has any effects on the corporation value assessment. Therefore, based on corporate social responsibility, the correction mode of corpora- tion value assessment is put forward.展开更多
基金Project supported by National Key Research and Development Program of China(Grant Nos.2022YFC3320800 and 2021YFC1523500)the National Natural Science Foundation of China(Grant Nos.71971126,71673163,72304165,72204136,and 72104123).
文摘An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source.
基金supported by the National Social Science Fund of China (Grant No.23BGL270)。
文摘The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
文摘The problematic use of social media has numerous negative impacts on individuals'daily lives,interpersonal relationships,physical and mental health,and more.Currently,there are few methods and tools to alleviate problematic social media,and their potential is yet to be fully realized.Emerging large language models(LLMs)are becoming increasingly popular for providing information and assistance to people and are being applied in many aspects of life.In mitigating problematic social media use,LLMs such as ChatGPT can play a positive role by serving as conversational partners and outlets for users,providing personalized information and resources,monitoring and intervening in problematic social media use,and more.In this process,we should recognize both the enormous potential and endless possibilities of LLMs such as ChatGPT,leveraging their advantages to better address problematic social media use,while also acknowledging the limitations and potential pitfalls of ChatGPT technology,such as errors,limitations in issue resolution,privacy and security concerns,and potential overreliance.When we leverage the advantages of LLMs to address issues in social media usage,we must adopt a cautious and ethical approach,being vigilant of the potential adverse effects that LLMs may have in addressing problematic social media use to better harness technology to serve individuals and society.
基金Supported by City Science and Technology Development Project in Jining,No.2021YXNS049,No.2022YXNS100,No.2022YXNS102,and No.2022YXNS109。
文摘BACKGROUND Depression is a prevalent psychological issue in adolescents that is significantly related to negative life events(NLEs)and dysfunctional attitudes.High levels of social support can significantly buffer NLEs’effect on depression.Currently,there is limited research on how social support moderates the relationship between NLEs,dysfunctional attitudes,and depression in adolescents in China.It is imperative to investigate this moderating effect to mitigate dysfunctional attitudes in adolescent undergoing depressive mood,ultimately enhancing their overall mental health.AIM To investigate the relationship and underlying mechanisms between specific dysfunctional attitudes,social support,and depression among Chinese adolescents.METHODS This is a cross-sectional study which selected five middle schools in Shandong Province for investigation in March 2022.Participants included 795 adolescents(49.87%male,mage=15.15,SD=1.84,age range=11-18 years old).All participants completed the Dysfunctional Attitude Scale,Adolescent Life Event Scale,Beck Depression Inventory,and Social Support Rating Scale.A moderated mediation model was conducted to examine the relationship between specific dysfunctional attitudes,social support,and depression.RESULTS Results indicated that NLEs affected depression through the mediating role of specific dysfunctional attitudes(autonomy attitudesβ=0.21;perfectionismβ=0.25).Moreover,social support was found to moderate the mediating effect between NLEs,specific dysfunctional attitudes,and depressive symptoms(autonomy attitudes b2=-0.08;perfectionism b2=-0.09).CONCLUSION Dysfunctional attitudes mediated and social support moderated the relationship between NLEs and depression.Social support can buffer depression symptoms among adolescents with autonomy attitudes and perfectionism.
文摘It is a complex and important topic to study the linkage mechanism of government audit,social audit,and internal audit in the context of China’s high-quality economic development.The implementation of measures,such as establishing a sound and perfect organizational safeguard mechanism,strengthening project collaborative audit mechanism,enhancing the mechanism for utilizing audit results,and establishing an audit and rectification joint mechanism can promote the efficient operation of the audit supervision system and the high-quality development of audit services.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51874183 and 51874182)the National Key Research and Development Program of China (Grant No. 2018YFC0809300)。
文摘The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.
基金supported financially by the National Natural Science Foundation of China,No.82071272(to YZ).
文摘Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.
基金the National Natural Science Foundation of China(71871121).
文摘Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.
文摘It is commonly accepted that, on social networks, the opinion of the agents with a higher connectivity, i.e., a larger number of followers, results in more convincing than that of the agents with a lower number of followers. By kinetic modeling approach, a kinetic model of opinion formation on social networks is derived, in which the distribution function depends on both the opinion and the connectivity of the agents. The opinion exchange process is governed by a Sznajd type model with three opinions, ±1, 0, and the social network is represented statistically with connectivity denoting the number of contacts of a given individual. The asymptotic mean opinion of a social network is determined in terms of the initial opinion and the connectivity of the agents.
文摘With the penetration of the Internet, virtual groups have become more and more popular. The reliability and accuracy of interpersonal perception in the virtual environment is an intriguing issue. Using the Social relations model (SRM) [1], this paper investigates interpersonal perception in virtual groups from a multilevel perspective. In particular, it examines the following three areas: homophily, identification, and individual attraction, and explores how much of these directional and dyadic relational evaluations can be attributed to the effect of the actor, the partner, and the relationship.
文摘Corporate social responsibility is the inevitable requirement for the survival and development of enterprises in modern society,as well as the basic guarantee for the sustainable development of economy and society.In order to analyze the driving factors of corporate social responsibility from both internal and external aspects,the dynamic model of corporate social responsibility was constructed,and the driving strategies of corporate social responsibility were also suggested.The driving factors of corporate social responsibility include not only the external constraints of policies,regulations and stakeholders,but also the internal requirements of the sustainable development of enterprises.Only when the external driving force is transformed into the spontaneous and conscious responsibility behavior of the enterprise,can the enterprise achieve its due effect.Moreover,in order to better fulfill the social responsibility,enterprise should build a management system of social responsibility,enhance the awareness of social responsibility,and promote the effective implementation of social responsibility projects.The relevant department should strengthen the all-round supervision of corporate social responsibility,and further improve the policies,laws and regulations related to social responsibility.Enterprises should strengthen communication with stakeholders,actively disclose social responsibility information,and constantly improve social responsibility behavior.By implementing social responsibility,enterprise can improve its business environment,enhance corporate brand image and core competitiveness,and promote the sustainable development of economy and society.
基金This work was supported by the 2021 Project of the“14th Five-Year Plan”of Shaanxi Education Science“Research on the Application of Educational Data Mining in Applied Undergraduate Teaching-Taking the Course of‘Computer Application Technology’as an Example”(SGH21Y0403)the Teaching Reform and Research Projects for Practical Teaching in 2022“Research on Practical Teaching of Applied Undergraduate Projects Based on‘Combination of Courses and Certificates”-Taking Computer Application Technology Courses as an Example”(SJJG02012)the 11th batch of Teaching Reform Research Project of Xi’an Jiaotong University City College“Project-Driven Cultivation and Research on Information Literacy of Applied Undergraduate Students in the Information Times-Taking Computer Application Technology Course Teaching as an Example”(111001).
文摘Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends.
文摘Social media has revolutionized the dissemination of real-life information,serving as a robust platform for sharing life events.Twitter,characterized by its brevity and continuous flow of posts,has emerged as a crucial source for public health surveillance,offering valuable insights into public reactions during the COVID-19 pandemic.This study aims to leverage a range of machine learning techniques to extract pivotal themes and facilitate text classification on a dataset of COVID-19 outbreak-related tweets.Diverse topic modeling approaches have been employed to extract pertinent themes and subsequently form a dataset for training text classification models.An assessment of coherence metrics revealed that the Gibbs Sampling Dirichlet Mixture Model(GSDMM),which utilizes trigram and bag-of-words(BOW)feature extraction,outperformed Non-negative Matrix Factorization(NMF),Latent Dirichlet Allocation(LDA),and a hybrid strategy involving Bidirectional Encoder Representations from Transformers(BERT)combined with LDA and K-means to pinpoint significant themes within the dataset.Among the models assessed for text clustering,the utilization of LDA,either as a clustering model or for feature extraction combined with BERT for K-means,resulted in higher coherence scores,consistent with human ratings,signifying their efficacy.In particular,LDA,notably in conjunction with trigram representation and BOW,demonstrated superior performance.This underscores the suitability of LDA for conducting topic modeling,given its proficiency in capturing intricate textual relationships.In the context of text classification,models such as Linear Support Vector Classification(LSVC),Long Short-Term Memory(LSTM),Bidirectional Long Short-Term Memory(BiLSTM),Convolutional Neural Network with BiLSTM(CNN-BiLSTM),and BERT have shown outstanding performance,achieving accuracy and weighted F1-Score scores exceeding 80%.These results significantly surpassed other models,such as Multinomial Naive Bayes(MNB),Linear Support Vector Machine(LSVM),and Logistic Regression(LR),which achieved scores in the range of 60 to 70 percent.
文摘Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital world. These networks can be viewed as a collection of nodes and edges, where users and their interactions are represented as nodes and the connections between them as edges. Understanding the factors that contribute to the formation of these edges is important for studying network structure and processes. This knowledge can be applied to various areas such as identifying communities, recommending friends, and targeting online advertisements. Several factors, including node popularity and friends-of-friends relationships, influence edge formation and network growth. This research focuses on the temporal activity of nodes and its impact on edge formation. Specifically, the study examines how the minimum age of friends-of-friends edges and the average age of all edges connected to potential target nodes influence the formation of network edges. Discrete choice analysis is used to analyse the combined effect of these temporal factors and other well-known attributes like node degree (i.e., the number of connections a node has) and network distance between nodes. The findings reveal that temporal properties have a similar impact as network proximity in predicting the creation of links. By incorporating temporal features into the models, the accuracy of link prediction can be further improved.
文摘BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.
文摘This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more susceptible to vishing attacks. The proposed Emoti-Shing model analyzes potential victims’ emotions using Hidden Markov Models to track vishing scams by examining the emotional content of phone call audio conversations. This approach aims to detect vishing scams using biological features of humans, specifically emotions, which cannot be easily masked or spoofed. Experimental results on 30 generated emotions indicate the potential for increased vishing scam detection through this approach.
文摘The Bayesian structural equation model integrates the principles of Bayesian statistics, providing a more flexible and comprehensive modeling framework. In exploring complex relationships between variables, handling uncertainty, and dealing with missing data, the Bayesian structural equation model demonstrates unique advantages. Therefore, Bayesian methods are used in this paper to establish a structural equation model of innovative talent cognition, with the measurement of college students’ cognition of innovative talent being studied. An in-depth analysis is conducted on the effects of innovative self-efficacy, social resources, innovative personality traits, and school education, aiming to explore the factors influencing college students’ innovative talent. The results indicate that innovative self-efficacy plays a key role in perception, social resources are significantly positively correlated with the perception of innovative talents, innovative personality tendencies and school education are positively correlated with the perception of innovative talents, but the impact is not significant.
文摘The performance of corporate social responsibility is conducive to the con- tinuous improvement of their profitability, and promotes the upgrading of corporation value. However, it is difficult to confirm, calculate and check the costs and benefits brought by the implementation of corporate social responsibility under the current ac- counting theory system, so it is difficult to estimate whether the fulfillment of corpo- rate social responsibility has any effects on the corporation value assessment. Therefore, based on corporate social responsibility, the correction mode of corpora- tion value assessment is put forward.