For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest o...For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.展开更多
The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality proce...The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 ~tm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5x 107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.展开更多
By desilication treatment,the Al2O3/SiO2 molar ratio of coal fly ash could be improved to the range of 1.63-2.0.The desilicated coal fly ash(DSCFA)was enriched in alumina extraction.A processing technology was develop...By desilication treatment,the Al2O3/SiO2 molar ratio of coal fly ash could be improved to the range of 1.63-2.0.The desilicated coal fly ash(DSCFA)was enriched in alumina extraction.A processing technology was developed for alumina extraction from the DSCFA with the lime sintering process.Ca/(SiO2+TiO2)molar ratio,and NaO/Al2O3 molar ratio,sintering time,and temperature were the most significant parameters impacting on the aluminum extraction efficiency.The optima aluminum extraction efficiency was obtained under conditions of Ca/(SiO2+TiO2)molar ratio of 2.0,NaO/Al2O3 molar ratio of 0.98,and sintering at 1 200 ℃for 60 min.Astandard industrial dissolution method was used under conditions of caustic ratio(αk=n(NaO)/n(Al2O3)of 2.0,Al2O3 concentration of 50 g/L,sodium hydroxide concentration(Nk)of 60.78 g/L,Na2CO3 concentration of 10 g/L,temperature of 85℃, and dissolution duration of 10 min.The final aluminum extraction efficiency was 90%.展开更多
This paper was to investigate the optical and luminescence properties of Sm^(3+) doped SLB glasses by a melt quenching technique. The optical and luminescence properties of the prepared glass samples were investigated...This paper was to investigate the optical and luminescence properties of Sm^(3+) doped SLB glasses by a melt quenching technique. The optical and luminescence properties of the prepared glass samples were investigated via absorption and photoluminescence spectra, respectively. The related physical and optical parameters were also calculated. From optical absorption measurements, the transition ~6H_(5/2) → ~6P_(3/2) at 403 nm has a higher spectral intensity and is a hypersensitive transition. From photoluminescence spectra, four prominent emission spectra appear. The most intense band is located at ~4G_(5/2) →~6H_(9/2)(599 nm), which is the characteristic emission range of Sm^(3+) ions with the reddish orange color. The experimental decay time of the ~4G_(5/2) level of Sm^(3+) SLB glasses was determined. The decay time decreases from 1.367 to 0.333 ms with increasing the content of Sm^(3+). The color coordinates(x, y) of the prepared glasses passes through the reddish-orange region in the CIE 1931 diagram and are suitable for orange LEDs, optoelectronics, and solidstate lighting. The further investigation on the optimization of the dopant content in the SLB glasses was suggested.展开更多
The diffusion property of sulfur on the soda-lime-silicate float glass surface was studied by using secondary ion mass spectroscopy(SIMS).According to the Fick's Second Law,two models of diffusion of sulfur on the ...The diffusion property of sulfur on the soda-lime-silicate float glass surface was studied by using secondary ion mass spectroscopy(SIMS).According to the Fick's Second Law,two models of diffusion of sulfur on the glass surface were built.When the diffusion of sulfate(S^6+) is considered uniquely,the concentration-depth profile of sulfur can not be fitted very well,especially on the top surfaces of the air side and tin side of float glass.So the diffusion of sulfide(S^2-) on the profile of sulfur can not be ignored.The concentration-depth profile of sulfur on both sides of glass can be fitted more exactly when both S^6+ and S^2- are considerd.Based on the above-mentioned fitting results,it is concluded that the diffusion coefficents of S^6+ and S^2- of tin side are larger than those of the air side.Moreover,the diffusion coefficents are related to the contacted medium.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 50775057)
文摘For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.
基金supported by National Natural Science Foundation for Young Scholars of China(Grant No.51205053)National Natural Science Foundation of China(Grant No.51075064)
文摘The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 ~tm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5x 107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.
基金Project(YFZX(0804))supported by Science Foundation of the Pingshuo Coal Industry Company,China
文摘By desilication treatment,the Al2O3/SiO2 molar ratio of coal fly ash could be improved to the range of 1.63-2.0.The desilicated coal fly ash(DSCFA)was enriched in alumina extraction.A processing technology was developed for alumina extraction from the DSCFA with the lime sintering process.Ca/(SiO2+TiO2)molar ratio,and NaO/Al2O3 molar ratio,sintering time,and temperature were the most significant parameters impacting on the aluminum extraction efficiency.The optima aluminum extraction efficiency was obtained under conditions of Ca/(SiO2+TiO2)molar ratio of 2.0,NaO/Al2O3 molar ratio of 0.98,and sintering at 1 200 ℃for 60 min.Astandard industrial dissolution method was used under conditions of caustic ratio(αk=n(NaO)/n(Al2O3)of 2.0,Al2O3 concentration of 50 g/L,sodium hydroxide concentration(Nk)of 60.78 g/L,Na2CO3 concentration of 10 g/L,temperature of 85℃, and dissolution duration of 10 min.The final aluminum extraction efficiency was 90%.
文摘This paper was to investigate the optical and luminescence properties of Sm^(3+) doped SLB glasses by a melt quenching technique. The optical and luminescence properties of the prepared glass samples were investigated via absorption and photoluminescence spectra, respectively. The related physical and optical parameters were also calculated. From optical absorption measurements, the transition ~6H_(5/2) → ~6P_(3/2) at 403 nm has a higher spectral intensity and is a hypersensitive transition. From photoluminescence spectra, four prominent emission spectra appear. The most intense band is located at ~4G_(5/2) →~6H_(9/2)(599 nm), which is the characteristic emission range of Sm^(3+) ions with the reddish orange color. The experimental decay time of the ~4G_(5/2) level of Sm^(3+) SLB glasses was determined. The decay time decreases from 1.367 to 0.333 ms with increasing the content of Sm^(3+). The color coordinates(x, y) of the prepared glasses passes through the reddish-orange region in the CIE 1931 diagram and are suitable for orange LEDs, optoelectronics, and solidstate lighting. The further investigation on the optimization of the dopant content in the SLB glasses was suggested.
基金Funded by National Natural Science Foundation of China(NSFC)(No.50972136)National Science and Technology S upporting P rogram(No.2015BAA02B00)+1 种基金National Key Technologies R&D Program(No.2016YFB0303900)the Fundamental Research Funds of State Key Laboratory for Advanced Technology of Float Glass
文摘The diffusion property of sulfur on the soda-lime-silicate float glass surface was studied by using secondary ion mass spectroscopy(SIMS).According to the Fick's Second Law,two models of diffusion of sulfur on the glass surface were built.When the diffusion of sulfate(S^6+) is considered uniquely,the concentration-depth profile of sulfur can not be fitted very well,especially on the top surfaces of the air side and tin side of float glass.So the diffusion of sulfide(S^2-) on the profile of sulfur can not be ignored.The concentration-depth profile of sulfur on both sides of glass can be fitted more exactly when both S^6+ and S^2- are considerd.Based on the above-mentioned fitting results,it is concluded that the diffusion coefficents of S^6+ and S^2- of tin side are larger than those of the air side.Moreover,the diffusion coefficents are related to the contacted medium.