Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon fra...Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon framework(DRPCF)built with N/O-co-doped mesoporous nanosheets and containing many defects using porous g-C_(3)N_(4)(PCN)and dopamine(DA)as raw materials.We prepared samples with PCN/DA mass ratios of 1/1,2/1 and 3/1 and found that the one with a mass ratio of 2/1 and a carbonization temperature of 700℃ in an Ar atmosphere(DRPCF-2/1-700),had a large specific surface area with an enormous pore volume and a large number of N/O heteroatom active defect sites.Because of this,it had the best pseudocapacitive sodium and potassium ion stor-age performance.A half battery of Na//DRPCF-2/1-700 maintained a capacity of 328.2 mAh g^(-1) after being cycled at 1 A g^(-1) for 900 cycles,and a half battery of K//DRPC-2/1-700 maintained a capacity of 321.5 mAh g^(-1) after being cycled at 1 A g^(-1) for 1200 cycles.The rate capability and cycling stability achieved by DRPCF-2/1-700 outperforms most reported carbon materials.Finally,ex-situ Raman spectroscopy analysis result confirms that the filling and removing of K^(+)and Na^(+)from the electrochemically active defects are responsible for the high capacity,superior rate and cycling performance of the DRPCF-2/1-700 sample.展开更多
The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical perfo...The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.展开更多
ObjectiveThis study aimed to investigate the effect of the interactions among potassium (K), calcium (Ca) and sodium (Na) on cabbage growth and nutrient absorption. MethodA total of 11 treatments with different ...ObjectiveThis study aimed to investigate the effect of the interactions among potassium (K), calcium (Ca) and sodium (Na) on cabbage growth and nutrient absorption. MethodA total of 11 treatments with different levels of K, Ca and Na were set in the pot experiment to measure the nutrient content and uptake in cabbage plants. ResultThe use of K or the combined use of K and Ca improved the cabbage absorption on K and Ca. In addition, K and Ca presented an interaction as that appropriate amount of Ca promoted K uptake while excessive Ca inhibited the uptake. The treatment of Ca 2 K 3 with 0.33 g/pot of Ca and 0.67 g/pot of K could significantly increase the quantity of dry matter accumulation and absorption of Ca and K in cabbage, was the best among all treatments. ConclusionApplication of suitable amount of Ca could release the Na stress on cabbage growth at the low level of Na in soil.展开更多
A field experiment was conducted on a sandy loam soil at an Experimental Farm in Taejon, South Korea, to determine the effects of paper mill sludge compost application rates on K, Na, Ca and Mg concentrations of soybe...A field experiment was conducted on a sandy loam soil at an Experimental Farm in Taejon, South Korea, to determine the effects of paper mill sludge compost application rates on K, Na, Ca and Mg concentrations of soybean (Glycine max (L.) Merr.) aboveground tissues and the genotypic effects on the concentrations of these elements. Sludge compost treatments of 0, 75, and 150 t ha-1 were applied to 30 diverse soybean cultivars. Concentrations of K, Na, Ca, and Mg in aboveground tissues harvested 69 days after …展开更多
The efficient, green, facile, mild and straightforward conversion procedure for the oxidation of cyclic ketones to lactones at room temperature utilizing potassium peroxydisulfate (K2S2O8) in acidic media is satisfa...The efficient, green, facile, mild and straightforward conversion procedure for the oxidation of cyclic ketones to lactones at room temperature utilizing potassium peroxydisulfate (K2S2O8) in acidic media is satisfactory to high yields without using traditional chlorinated solvents is reported. This oxidative reagent is cheap and friendly environmental procedure for industrial purposes than use of organic peracids.展开更多
Objective Several studies have examined the relationships between dietary potassium and sodium and hypertension, but few have evaluated the association between serum potassium or sodium and risk of incident hypertensi...Objective Several studies have examined the relationships between dietary potassium and sodium and hypertension, but few have evaluated the association between serum potassium or sodium and risk of incident hypertension. We therefore investigated the associations between serum potassium and sodium and risk of incident hypertension in a Chinese community-based population. Methods A total of 839 normotensive individuals without cardiovascular disease from the Chinese Multi-Provincial Cohort Study who took part in the baseline examination in 2007-2008 and the follow-up survey in 2012-2013 were included in this study. Odds ratios (OR) and 95% confidence intervals (95%CI) for baseline serum potassium and sodium in relation to the risk of new-onset hypertension were evaluated using multivari- ate logistic regression models. Results During five years of follow-up, 218 (26.0%) individuals progressed to hypertension. Logistic re- gression adjusting for multiple confounders showed that every 1 mEq/L increment in baseline serum potassium level was associated with a 75% increased risk of hypertension (OR: 1.75; 95%CI: 1.01-3.04; P = 0.04). Compared with adults with serum potassium level of 4.20-4.79 mEq/L, adults with level 〉 4.80 mEq/L had an 84% increased risk of hypertension (OR: 1.84; 95%CI: 1.14-2.96; P = 0.01). There was no significant association between serum sodium and risk of hypertension (OR: 0.96; 95%CI: 0.89-1.04; P = 0.33). Conclusions Base- line serum potassium level, but not baseline serum sodium level, was positively related to the risk of incident hypertension in the Chinese population.展开更多
Adsorption of potassium and sodium ions by four typical variable charge soils of South China was studied. The results indicated that the variable charge soils saturated with H and Al showed a much higher preference fo...Adsorption of potassium and sodium ions by four typical variable charge soils of South China was studied. The results indicated that the variable charge soils saturated with H and Al showed a much higher preference for potassium ions relative to sodium ions, and this tendency could not be changed by such factors as the pH, the concentration of the cations, the dielectric constant of solvent, the accompanying anions and the iron oxide content etc., suggesting that this difference in affinity is caused by the difference in the nature of the two cations. It was observed that a negative adsorption of sodium ions by latosol and lateritic red soil in a mixed system containing equal amount of potassium and sodium ions at low pH, which is caused by a competitive adsorption of potassium and sodium ions and repulsion of positive charge on the surfaces of soil particles for cations. The adsorption of potassium and sodium ions increased with the decreases in the dielectric constant of solvent and the iron oxide content. Sulfate affected the adsorption of potassium and sodium ions through changing the surface properties of the soils.展开更多
Heteroatom-doped carbon materials have been widely used as sodium(Na) and potassium(K) metal anode frameworks to achieve uniform Na and K depositions. If the origin of the Sodiophilicity and potassiophilicity of dopin...Heteroatom-doped carbon materials have been widely used as sodium(Na) and potassium(K) metal anode frameworks to achieve uniform Na and K depositions. If the origin of the Sodiophilicity and potassiophilicity of doping sites in heteroatom-doped carbon host are clearly understood, the nucleation and growth behavior of Na and K can be precisely regulated in working batteries. Herein the Sodiophilicity and potassiophilicity chemistries of carbon materials are probed through first-principles calculations. The local dipole of doping functional groups and charge transfer during Na/K deposition are regarded as key principles to reveal the sodiophilic and potassiophilic nature of doping sites. Especially, O–B, O–S, and O–P co-doping strategy are predicted to be effective methods to improve the Sodiophilicity and potassiophilicity of carbon hosts and thus render safe and dendrite-free Na and K metal anodes. This work affords a deep and insightful understanding of Sodiophilicity and potassiophilicity chemistry of Na and K anodes and establishes general principles of designing highly sodiophilic and potassiophilic carbon frameworks.展开更多
An ionic conductivity prediction equation at low concentration for two acid salts is proposed taking into account the dissociation and association equilibria among ions. The salts considered are sodium and potassium h...An ionic conductivity prediction equation at low concentration for two acid salts is proposed taking into account the dissociation and association equilibria among ions. The salts considered are sodium and potassium hydrogen tartrates. There is no additional parameter of high order terms except for the Onsager's coefficient of limited term in the new equation. Results show a complex conductance of acidic tartrates in aqueous solution. The molar conductivities of metal ions are nearly constant such that the contributions from hydrogen and tartrate ions decrease with concentration, while the molar conductivity of bitartrate ion increases with concentration.展开更多
The effects of phorbol-12,13-dibuterate (PDBu) on total sodium current (INa-total), tetrodotoxin-resistant sodium current (INa-TFXr), 4-AP-sensitive potassium current (IA) and TEA-sensitive potassium current ...The effects of phorbol-12,13-dibuterate (PDBu) on total sodium current (INa-total), tetrodotoxin-resistant sodium current (INa-TFXr), 4-AP-sensitive potassium current (IA) and TEA-sensitive potassium current (IK) in trigeminal ganglion (TG) neurons were investigated. Whole-cell patch clamp techniques were used to record ion currents in cultured TG neurons of rats. Results revealed that 0.5μmol/L PDBu reduced the amplitude of INa-total by (38.3±4.5)% (n=6, P〈0.05), but neither the G-V curve (control: V0.5 =-17.1±4.3 mV, k=7.4±1.3; PDBu: V0.5=-15.9±5.9 mV, k=5.9±1.4; n=6, P〉0.05) nor the inactivation rate constant (control: 3.6±0.9 ms; PDBu: 3.6±0.8 ms; n=6, P〉0.05) was altered. 0.5 μmol/L PDBu could significantly increase the amplitude of INa-TFXr by (37.2± 3.2)% (n=9, P〈0.05) without affecting the G-V curve (control: V0.5=-14.7±6.0 mV, k=6.9± 1.4; PDBu: V0.5=- 11.1±5.3 mV, k=8.1± 1.5; n=5, P〉0.05 ) or the inactivation rate constant (control: 4.6±0.6 ms; PDBu: 4.2±0.5 ms; n=5, P〉0.05). 0.5 μmol/L PDBu inhibited IK by (15.6±5.0) % (n=16, P〈0.05), and V0.5 was significantly altered from - 4.7±1.4 mV to -7.9 ±1.8 mV (n=16, P〈0.05). IA was not significantly affected by PDBu, 0.5μmol/L PDBu decreased IA by only (0.3±3.2)% (n=5, P〉0.05). It was concluded that PDBu inhibited INa-total :.but enhanced INa-TFXr, and inhibited IK without affecting IA. These data suggested that the activation of PKC pathway could exert the actions.展开更多
A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cel...A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.展开更多
InSb alloy is a promising candidate for sodium/potassium ion batteries(SIBs/PIBs)but challenged with achieving high performance by dramatic volumetric changes.Herein,nanoporous(np)-InSb with dualscale phases(cubic/hex...InSb alloy is a promising candidate for sodium/potassium ion batteries(SIBs/PIBs)but challenged with achieving high performance by dramatic volumetric changes.Herein,nanoporous(np)-InSb with dualscale phases(cubic/hexagonal(C/H)-InSb)was fabricated by chemical dealloying of ternary Mg-In-Sb precursor.Operando X-ray diffraction(XRD)and ex-situ characterizations well rationalize the dealloying/alloying mechanisms and the formation of dual-scale microstructures/phases.As an anode for SIB/PIBs,the np-InSb electrode exhibits superior reversible capacities and lifespan compared with the monometallic porous(p)-In electrode,stemming from the dealloying-induced dual-scale nanoporous architecture and alloying strategy with proper composition.The operando XRD results demonstrate that the(de)sodiated mechanism of the np-InSb electrode involves a two-step(de)alloying process,while the(de)potassiated mechanism is associated with a full electrochemically-driven amorphization upon cycling.Additionally,the gas evolution during the(dis)charge process was monitored by on-line mass spectrometry.展开更多
Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chlorid...Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chloride regulation in the pain pathway and by effecting neuronal excitability and pain sensitization. The present study aimed to investigate the analgesic effect of the speciifc sodium-potassium-chloride co-transporter 1 inhibitor bumetanide, and the change in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Results showed that intrathecal bumetanide could decrease cumulative pain scores, and could increase thermal and mechanical pain thresholds in a rat model of incisional pain. Sodium-potassium-chloride co-transporter 1 expression in-creased in neurons from dorsal root ganglion and the deep laminae of the ipsilateral dorsal horn following incision. By contrast, potassium-chloride co-transporter 2 expression decreased in neurons of the deep laminae from the ipsilateral dorsal horn. These ifndings suggest that spinal sodium-potassium-chloride co-transporter 1 expression was up-regulated and spinal potassi-um-chloride co-transporter 2 expression was down-regulated following incision. Intrathecal bumetanide has analgesic effects on incisional pain through inhibition of sodium-potassi-um-chloride co-transporter 1.展开更多
In this study, it was to investigate the swelling performance of novel biohybrid composite hydrogel sorbents containing acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite in water and binary mix...In this study, it was to investigate the swelling performance of novel biohybrid composite hydrogel sorbents containing acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite in water and binary mixtures of water-solvent. Novel hydrogels were synthesized with free radical solution polymerization by using ammonium persulfate/N,N,N’,N’-tetramethylethylenediamine as redox initiating pair in presence of poly(ethylene glycol) diacrylate as crosslinker. Swelling experiments were performed in water and binary mixtures of water-solvent (acetone, methanol and tetrahydrofuran) at 25°C, gravimetrically. Some swelling and diffusion properties of the hydrogels were calculated and they were discussed for the biohybrid/hybrid hydrogel systems prepared under various formulations. It has been seen the lower equilibrium percentage swelling ratio values (62% - 124%) in all solvent compositions in comparison with the equilibrium percentage swelling ratio values in water (718% - 2055%). Consequently, the hydrogel systems developed in this study could serve as a potential device for water and water-solvent binary mixtures.展开更多
The local coordination structures around the doping Yb2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model. Both the cases with and without the charge compensation vac...The local coordination structures around the doping Yb2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model. Both the cases with and without the charge compensation vacancy in the local environment of the doping Yb2+ were calculated to study the effect of the doping on the local coordination structures of Yb2+. Using the calculated local structures, we obtained the crystal-field parameters for the Yb2+ ions doped in sodium and potassium halides by a method based on the combination of the quantum-chemical calculations and the effective Hamiltonian method. The calculated crystal-field parameters were analyzed and compared with the fitted results.展开更多
This paper describes the preparation of a piezoelectric glass ceramic material from potassium sodium niobate (Ko.sNa0.sNbO3; KNN) using a novel melting method. The effects of the subsequent heat-treatment on the opt...This paper describes the preparation of a piezoelectric glass ceramic material from potassium sodium niobate (Ko.sNa0.sNbO3; KNN) using a novel melting method. The effects of the subsequent heat-treatment on the optical, thermal, electrical, and mechanical properties of the material are carefully examined, and its crystal structure and surface morphol- ogy are characterized respectively by x-ray diffraction and scanning electron microscopy. This new material has a much higher piezoelectric coefficient (163 pC.N-1) than traditional piezoelectric ceramics (131 pC.N-1 ). On this basis therefore, a strategy for the future study and development of lead-free KNN-based piezoelectric glass ceramics is proposed.展开更多
Background: The Togolese population, like those around the world, frequently consumes foods high in salt/sodium and low in potassium, thus exposing them to cardiovascular disease (CVD). Nutritional intervention can he...Background: The Togolese population, like those around the world, frequently consumes foods high in salt/sodium and low in potassium, thus exposing them to cardiovascular disease (CVD). Nutritional intervention can help reverse this consumption pattern and reduce related CVD morbidity and mortality. The objective of this study was to measure the effects of a nutrition education intervention on the consumption frequencies of foods rich in sodium and potassium. Methods: The study was a quasi-experimental before- and-after study, conducted from 08 January to 16 April 2023. It involved 200 adults aged 25 - 64 years, randomly selected from two areas: an intervention area and a non-intervention area. Data were collected in two phases at 3-month intervals in both groups. The intervention consisted of nutrition education (awareness raising and cooking demonstrations) on reducing salt/sodium intake and increasing potassium-rich food intake. The kobocollect electronic questionnaire was administered to the respondents to collect data on the frequency of consumption of foods rich in sodium and potassium. Results: The median age of the respondents was 33 years old (30;38) and 56% of the participants were women, 44% and 69% respectively in the control and intervention groups. Most participants lived in rural areas (51%), 52.4% and 49.5% in the control and intervention groups respectively. Overall, 4% (p individuals reduced their frequency of adding salt at mealtime from more than 3 times a week to less than 3 times, i.e., 5.6% in the intervention group and 1.7% in the control group. The proportion of individuals who consumed meals with green leafy vegetable sauces was reduced from more than 3 times a week to less than 3 times, i.e., 7.5% (p < 0.022), or 1% in the intervention group and 4% in the control group. Education level (0.23 [0.10 - 0.50];p - 6.35];p < 0.0006) were associated with reduced salt addition at meals. The same trend was observed for increased consumption of green leafy vegetable sauces (0.95 [0.03 - 0.99];p male (2 [1.08 - 1.84];p Conclusion: This study was able to measure the effects of a nutrition education intervention for adequate sodium and potassium intakes on changing favourable dietary behaviour through a quasi-experimental study. The results show that the continuation of the intervention will contribute to the adoption of favourable behaviours for the reduction of dietary sodium intakes and the optimisation of potassium intakes.展开更多
The aim of this work is to estimate the value of the electric field (potentials) for the system of valinomycin + К+ and Na+ ions based on a molecular dynamics (MD) study. An analysis has been performed of the interac...The aim of this work is to estimate the value of the electric field (potentials) for the system of valinomycin + К+ and Na+ ions based on a molecular dynamics (MD) study. An analysis has been performed of the interaction processes for the system of valinomycin + К+(Na+) ion in water solvent. It is obtained that capturing a К+(Na+) ion in the valinomycin cavity is not possible for all values of the electric field strength. Each of the two kinds of ions (К+ or Na+) has its own critical electric field associated with ion binding to valinomycin, for which to exist, the ion has to remain localized inside the valinomycin cavity. The results obtained for the electrical potential reveal a stronger valinomycin binding—especially with the potassium ion. Valinomycin’s molecular structure efficiently surrounds the K+ ion, as this structure has to exactly correspond to the K+ ion in size. MD simulation results could be a prerequisite for studying a more complex scenario—for estimating ion transport in the cell membrane or physiological electric potential which is formed in the membrane or inside the cell relative to its surrounding medium.展开更多
The membrane permeability coefficient for sodium and potassium ions in unicellular organisms can be calculated using the data for cell volume, surface and mean generation time during growth and dividing of cells by bi...The membrane permeability coefficient for sodium and potassium ions in unicellular organisms can be calculated using the data for cell volume, surface and mean generation time during growth and dividing of cells by binary. Accordingly theory of proposed method, the membrane permeability coefficients for passed trough outer cell membrane sodium and potassium ions, is equal to the volume of unicellular organism divided to product between cell surface and mean generation time of cells. The calculated by this way diapason of values overlaps with experimentally measured diapason of values of permeability coefficient for sodium and potassium ions. The deviation between the theoretically calculated and experimentally measured values of permeability coefficient does not exceed one order of magnitude.展开更多
Penguin and skua in the maritime Antarctic have high salt loadings in the body due to almost exclusive diet consumption of marine invertebrates.However,the storage and turnover of sodium and potassium in these animals...Penguin and skua in the maritime Antarctic have high salt loadings in the body due to almost exclusive diet consumption of marine invertebrates.However,the storage and turnover of sodium and potassium in these animals are poorly investigated.Here we determined the concentration and microscopic distribution of the two elements in the bones of penguin and skua.The average concentrations of sodium and potassium in penguin bone were comparable with that in skua bone(0.18% and 0.82% for penguin bone;0.19% and 0.76% for skua bone in dry weight).The ratios of sodium to calcium and potassium to calcium(0.0330 and 0.0075 for penguin,0.0335 and 0.0082 for skua in average by weight) were somewhat higher than the reported ratios for terrestrial animals,indicating these marine animals' bone enrichment of salt.The ratios of sodium to potassium in average by weight were 6.75 and 4.65 for penguin and skua,respectively.This value is much lower compared with the bulk sea water ratio of about 27.0,implying that potassium is favorable to reside in the bone rather than sodium.Both sodium and potassium were found to significant correlation with the content of organic materials in bone based upon the intensity of native signal determined by electron paramagnetic resonance(EPR).It was estimated that almost all of potassium is kept within the organic phases,while about 30% of sodium is stored in organic phases and the other 70% within mineral phase.The microscopic distributions of potassium in the cross-section and/or surface were revealed by synchrotron radiation Xray fluorescence(SR-XRF) technique.The ratio of potassium to calcium based upon the SR-XRF intensity counter varied considerably from the surface to the interior,and on the surface the highest concentration of potassium was observed in the middle section with decreasing amounts toward the edge.This indirectly documented that exchange of potassium between fluid and bone organic phase maybe occur.展开更多
文摘Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon framework(DRPCF)built with N/O-co-doped mesoporous nanosheets and containing many defects using porous g-C_(3)N_(4)(PCN)and dopamine(DA)as raw materials.We prepared samples with PCN/DA mass ratios of 1/1,2/1 and 3/1 and found that the one with a mass ratio of 2/1 and a carbonization temperature of 700℃ in an Ar atmosphere(DRPCF-2/1-700),had a large specific surface area with an enormous pore volume and a large number of N/O heteroatom active defect sites.Because of this,it had the best pseudocapacitive sodium and potassium ion stor-age performance.A half battery of Na//DRPCF-2/1-700 maintained a capacity of 328.2 mAh g^(-1) after being cycled at 1 A g^(-1) for 900 cycles,and a half battery of K//DRPC-2/1-700 maintained a capacity of 321.5 mAh g^(-1) after being cycled at 1 A g^(-1) for 1200 cycles.The rate capability and cycling stability achieved by DRPCF-2/1-700 outperforms most reported carbon materials.Finally,ex-situ Raman spectroscopy analysis result confirms that the filling and removing of K^(+)and Na^(+)from the electrochemically active defects are responsible for the high capacity,superior rate and cycling performance of the DRPCF-2/1-700 sample.
基金The Natural Science Foundation of Henan Province(222300420083)the Opening Foundation of State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource of Xinjiang University(KFKT2021004)。
文摘The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.
基金Supported by Agricultural Environment and Ecosystem Protection Program of Ministry of Agriculture of the People's Republic of China(2110402-201258)Agricultural Science and Technology Achievement Transformation and Promotion Program of Tianjin City(201203030)Cooperation Project of China and Canada(IPNI,Tianjin-2011)~~
文摘ObjectiveThis study aimed to investigate the effect of the interactions among potassium (K), calcium (Ca) and sodium (Na) on cabbage growth and nutrient absorption. MethodA total of 11 treatments with different levels of K, Ca and Na were set in the pot experiment to measure the nutrient content and uptake in cabbage plants. ResultThe use of K or the combined use of K and Ca improved the cabbage absorption on K and Ca. In addition, K and Ca presented an interaction as that appropriate amount of Ca promoted K uptake while excessive Ca inhibited the uptake. The treatment of Ca 2 K 3 with 0.33 g/pot of Ca and 0.67 g/pot of K could significantly increase the quantity of dry matter accumulation and absorption of Ca and K in cabbage, was the best among all treatments. ConclusionApplication of suitable amount of Ca could release the Na stress on cabbage growth at the low level of Na in soil.
文摘A field experiment was conducted on a sandy loam soil at an Experimental Farm in Taejon, South Korea, to determine the effects of paper mill sludge compost application rates on K, Na, Ca and Mg concentrations of soybean (Glycine max (L.) Merr.) aboveground tissues and the genotypic effects on the concentrations of these elements. Sludge compost treatments of 0, 75, and 150 t ha-1 were applied to 30 diverse soybean cultivars. Concentrations of K, Na, Ca, and Mg in aboveground tissues harvested 69 days after …
基金support and purchase of Hewlett-Packard 6890 GC-Hewlett-Packard 5973N MSD instrument.
文摘The efficient, green, facile, mild and straightforward conversion procedure for the oxidation of cyclic ketones to lactones at room temperature utilizing potassium peroxydisulfate (K2S2O8) in acidic media is satisfactory to high yields without using traditional chlorinated solvents is reported. This oxidative reagent is cheap and friendly environmental procedure for industrial purposes than use of organic peracids.
文摘Objective Several studies have examined the relationships between dietary potassium and sodium and hypertension, but few have evaluated the association between serum potassium or sodium and risk of incident hypertension. We therefore investigated the associations between serum potassium and sodium and risk of incident hypertension in a Chinese community-based population. Methods A total of 839 normotensive individuals without cardiovascular disease from the Chinese Multi-Provincial Cohort Study who took part in the baseline examination in 2007-2008 and the follow-up survey in 2012-2013 were included in this study. Odds ratios (OR) and 95% confidence intervals (95%CI) for baseline serum potassium and sodium in relation to the risk of new-onset hypertension were evaluated using multivari- ate logistic regression models. Results During five years of follow-up, 218 (26.0%) individuals progressed to hypertension. Logistic re- gression adjusting for multiple confounders showed that every 1 mEq/L increment in baseline serum potassium level was associated with a 75% increased risk of hypertension (OR: 1.75; 95%CI: 1.01-3.04; P = 0.04). Compared with adults with serum potassium level of 4.20-4.79 mEq/L, adults with level 〉 4.80 mEq/L had an 84% increased risk of hypertension (OR: 1.84; 95%CI: 1.14-2.96; P = 0.01). There was no significant association between serum sodium and risk of hypertension (OR: 0.96; 95%CI: 0.89-1.04; P = 0.33). Conclusions Base- line serum potassium level, but not baseline serum sodium level, was positively related to the risk of incident hypertension in the Chinese population.
文摘Adsorption of potassium and sodium ions by four typical variable charge soils of South China was studied. The results indicated that the variable charge soils saturated with H and Al showed a much higher preference for potassium ions relative to sodium ions, and this tendency could not be changed by such factors as the pH, the concentration of the cations, the dielectric constant of solvent, the accompanying anions and the iron oxide content etc., suggesting that this difference in affinity is caused by the difference in the nature of the two cations. It was observed that a negative adsorption of sodium ions by latosol and lateritic red soil in a mixed system containing equal amount of potassium and sodium ions at low pH, which is caused by a competitive adsorption of potassium and sodium ions and repulsion of positive charge on the surfaces of soil particles for cations. The adsorption of potassium and sodium ions increased with the decreases in the dielectric constant of solvent and the iron oxide content. Sulfate affected the adsorption of potassium and sodium ions through changing the surface properties of the soils.
基金supported by the National Key Research and Development Program(2016YFA0202500)the National Natural Science Foundation of China(21825501)the Tsinghua University Initiative Scientific Research Program。
文摘Heteroatom-doped carbon materials have been widely used as sodium(Na) and potassium(K) metal anode frameworks to achieve uniform Na and K depositions. If the origin of the Sodiophilicity and potassiophilicity of doping sites in heteroatom-doped carbon host are clearly understood, the nucleation and growth behavior of Na and K can be precisely regulated in working batteries. Herein the Sodiophilicity and potassiophilicity chemistries of carbon materials are probed through first-principles calculations. The local dipole of doping functional groups and charge transfer during Na/K deposition are regarded as key principles to reveal the sodiophilic and potassiophilic nature of doping sites. Especially, O–B, O–S, and O–P co-doping strategy are predicted to be effective methods to improve the Sodiophilicity and potassiophilicity of carbon hosts and thus render safe and dendrite-free Na and K metal anodes. This work affords a deep and insightful understanding of Sodiophilicity and potassiophilicity chemistry of Na and K anodes and establishes general principles of designing highly sodiophilic and potassiophilic carbon frameworks.
基金Supported by the National Natural Science Foundation of China(No.29736170)
文摘An ionic conductivity prediction equation at low concentration for two acid salts is proposed taking into account the dissociation and association equilibria among ions. The salts considered are sodium and potassium hydrogen tartrates. There is no additional parameter of high order terms except for the Onsager's coefficient of limited term in the new equation. Results show a complex conductance of acidic tartrates in aqueous solution. The molar conductivities of metal ions are nearly constant such that the contributions from hydrogen and tartrate ions decrease with concentration, while the molar conductivity of bitartrate ion increases with concentration.
基金This project was supported by a grant from National Natu-ral Sciences Foundation of China (No. 30271500).
文摘The effects of phorbol-12,13-dibuterate (PDBu) on total sodium current (INa-total), tetrodotoxin-resistant sodium current (INa-TFXr), 4-AP-sensitive potassium current (IA) and TEA-sensitive potassium current (IK) in trigeminal ganglion (TG) neurons were investigated. Whole-cell patch clamp techniques were used to record ion currents in cultured TG neurons of rats. Results revealed that 0.5μmol/L PDBu reduced the amplitude of INa-total by (38.3±4.5)% (n=6, P〈0.05), but neither the G-V curve (control: V0.5 =-17.1±4.3 mV, k=7.4±1.3; PDBu: V0.5=-15.9±5.9 mV, k=5.9±1.4; n=6, P〉0.05) nor the inactivation rate constant (control: 3.6±0.9 ms; PDBu: 3.6±0.8 ms; n=6, P〉0.05) was altered. 0.5 μmol/L PDBu could significantly increase the amplitude of INa-TFXr by (37.2± 3.2)% (n=9, P〈0.05) without affecting the G-V curve (control: V0.5=-14.7±6.0 mV, k=6.9± 1.4; PDBu: V0.5=- 11.1±5.3 mV, k=8.1± 1.5; n=5, P〉0.05 ) or the inactivation rate constant (control: 4.6±0.6 ms; PDBu: 4.2±0.5 ms; n=5, P〉0.05). 0.5 μmol/L PDBu inhibited IK by (15.6±5.0) % (n=16, P〈0.05), and V0.5 was significantly altered from - 4.7±1.4 mV to -7.9 ±1.8 mV (n=16, P〈0.05). IA was not significantly affected by PDBu, 0.5μmol/L PDBu decreased IA by only (0.3±3.2)% (n=5, P〉0.05). It was concluded that PDBu inhibited INa-total :.but enhanced INa-TFXr, and inhibited IK without affecting IA. These data suggested that the activation of PKC pathway could exert the actions.
文摘A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.
基金financial support by the National Natural Science Foundation of China(51871133)the Taishan Scholar Foundation of Shandong Province,the Key Research and Development Program of Shandong Province(2021ZLGX01)the program of Jinan Science and Technology Bureau(2019GXRC001)。
文摘InSb alloy is a promising candidate for sodium/potassium ion batteries(SIBs/PIBs)but challenged with achieving high performance by dramatic volumetric changes.Herein,nanoporous(np)-InSb with dualscale phases(cubic/hexagonal(C/H)-InSb)was fabricated by chemical dealloying of ternary Mg-In-Sb precursor.Operando X-ray diffraction(XRD)and ex-situ characterizations well rationalize the dealloying/alloying mechanisms and the formation of dual-scale microstructures/phases.As an anode for SIB/PIBs,the np-InSb electrode exhibits superior reversible capacities and lifespan compared with the monometallic porous(p)-In electrode,stemming from the dealloying-induced dual-scale nanoporous architecture and alloying strategy with proper composition.The operando XRD results demonstrate that the(de)sodiated mechanism of the np-InSb electrode involves a two-step(de)alloying process,while the(de)potassiated mechanism is associated with a full electrochemically-driven amorphization upon cycling.Additionally,the gas evolution during the(dis)charge process was monitored by on-line mass spectrometry.
基金supported by a grant from Guangzhou Medical University,No.2008C24
文摘Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chloride regulation in the pain pathway and by effecting neuronal excitability and pain sensitization. The present study aimed to investigate the analgesic effect of the speciifc sodium-potassium-chloride co-transporter 1 inhibitor bumetanide, and the change in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Results showed that intrathecal bumetanide could decrease cumulative pain scores, and could increase thermal and mechanical pain thresholds in a rat model of incisional pain. Sodium-potassium-chloride co-transporter 1 expression in-creased in neurons from dorsal root ganglion and the deep laminae of the ipsilateral dorsal horn following incision. By contrast, potassium-chloride co-transporter 2 expression decreased in neurons of the deep laminae from the ipsilateral dorsal horn. These ifndings suggest that spinal sodium-potassium-chloride co-transporter 1 expression was up-regulated and spinal potassi-um-chloride co-transporter 2 expression was down-regulated following incision. Intrathecal bumetanide has analgesic effects on incisional pain through inhibition of sodium-potassi-um-chloride co-transporter 1.
基金The work was supported by Adnan Menderes University Research Fund,under project number FEF 15006.
文摘In this study, it was to investigate the swelling performance of novel biohybrid composite hydrogel sorbents containing acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite in water and binary mixtures of water-solvent. Novel hydrogels were synthesized with free radical solution polymerization by using ammonium persulfate/N,N,N’,N’-tetramethylethylenediamine as redox initiating pair in presence of poly(ethylene glycol) diacrylate as crosslinker. Swelling experiments were performed in water and binary mixtures of water-solvent (acetone, methanol and tetrahydrofuran) at 25°C, gravimetrically. Some swelling and diffusion properties of the hydrogels were calculated and they were discussed for the biohybrid/hybrid hydrogel systems prepared under various formulations. It has been seen the lower equilibrium percentage swelling ratio values (62% - 124%) in all solvent compositions in comparison with the equilibrium percentage swelling ratio values in water (718% - 2055%). Consequently, the hydrogel systems developed in this study could serve as a potential device for water and water-solvent binary mixtures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074315, 11074245, 90922022, and 11111120060)the Russian Foundation for Basic Research (Grant No. 11-02-91152)the European Social Fund (Grant No. MTT50)
文摘The local coordination structures around the doping Yb2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model. Both the cases with and without the charge compensation vacancy in the local environment of the doping Yb2+ were calculated to study the effect of the doping on the local coordination structures of Yb2+. Using the calculated local structures, we obtained the crystal-field parameters for the Yb2+ ions doped in sodium and potassium halides by a method based on the combination of the quantum-chemical calculations and the effective Hamiltonian method. The calculated crystal-field parameters were analyzed and compared with the fitted results.
文摘This paper describes the preparation of a piezoelectric glass ceramic material from potassium sodium niobate (Ko.sNa0.sNbO3; KNN) using a novel melting method. The effects of the subsequent heat-treatment on the optical, thermal, electrical, and mechanical properties of the material are carefully examined, and its crystal structure and surface morphol- ogy are characterized respectively by x-ray diffraction and scanning electron microscopy. This new material has a much higher piezoelectric coefficient (163 pC.N-1) than traditional piezoelectric ceramics (131 pC.N-1 ). On this basis therefore, a strategy for the future study and development of lead-free KNN-based piezoelectric glass ceramics is proposed.
文摘Background: The Togolese population, like those around the world, frequently consumes foods high in salt/sodium and low in potassium, thus exposing them to cardiovascular disease (CVD). Nutritional intervention can help reverse this consumption pattern and reduce related CVD morbidity and mortality. The objective of this study was to measure the effects of a nutrition education intervention on the consumption frequencies of foods rich in sodium and potassium. Methods: The study was a quasi-experimental before- and-after study, conducted from 08 January to 16 April 2023. It involved 200 adults aged 25 - 64 years, randomly selected from two areas: an intervention area and a non-intervention area. Data were collected in two phases at 3-month intervals in both groups. The intervention consisted of nutrition education (awareness raising and cooking demonstrations) on reducing salt/sodium intake and increasing potassium-rich food intake. The kobocollect electronic questionnaire was administered to the respondents to collect data on the frequency of consumption of foods rich in sodium and potassium. Results: The median age of the respondents was 33 years old (30;38) and 56% of the participants were women, 44% and 69% respectively in the control and intervention groups. Most participants lived in rural areas (51%), 52.4% and 49.5% in the control and intervention groups respectively. Overall, 4% (p individuals reduced their frequency of adding salt at mealtime from more than 3 times a week to less than 3 times, i.e., 5.6% in the intervention group and 1.7% in the control group. The proportion of individuals who consumed meals with green leafy vegetable sauces was reduced from more than 3 times a week to less than 3 times, i.e., 7.5% (p < 0.022), or 1% in the intervention group and 4% in the control group. Education level (0.23 [0.10 - 0.50];p - 6.35];p < 0.0006) were associated with reduced salt addition at meals. The same trend was observed for increased consumption of green leafy vegetable sauces (0.95 [0.03 - 0.99];p male (2 [1.08 - 1.84];p Conclusion: This study was able to measure the effects of a nutrition education intervention for adequate sodium and potassium intakes on changing favourable dietary behaviour through a quasi-experimental study. The results show that the continuation of the intervention will contribute to the adoption of favourable behaviours for the reduction of dietary sodium intakes and the optimisation of potassium intakes.
文摘The aim of this work is to estimate the value of the electric field (potentials) for the system of valinomycin + К+ and Na+ ions based on a molecular dynamics (MD) study. An analysis has been performed of the interaction processes for the system of valinomycin + К+(Na+) ion in water solvent. It is obtained that capturing a К+(Na+) ion in the valinomycin cavity is not possible for all values of the electric field strength. Each of the two kinds of ions (К+ or Na+) has its own critical electric field associated with ion binding to valinomycin, for which to exist, the ion has to remain localized inside the valinomycin cavity. The results obtained for the electrical potential reveal a stronger valinomycin binding—especially with the potassium ion. Valinomycin’s molecular structure efficiently surrounds the K+ ion, as this structure has to exactly correspond to the K+ ion in size. MD simulation results could be a prerequisite for studying a more complex scenario—for estimating ion transport in the cell membrane or physiological electric potential which is formed in the membrane or inside the cell relative to its surrounding medium.
文摘The membrane permeability coefficient for sodium and potassium ions in unicellular organisms can be calculated using the data for cell volume, surface and mean generation time during growth and dividing of cells by binary. Accordingly theory of proposed method, the membrane permeability coefficients for passed trough outer cell membrane sodium and potassium ions, is equal to the volume of unicellular organism divided to product between cell surface and mean generation time of cells. The calculated by this way diapason of values overlaps with experimentally measured diapason of values of permeability coefficient for sodium and potassium ions. The deviation between the theoretically calculated and experimentally measured values of permeability coefficient does not exceed one order of magnitude.
基金supported by grants fromthe National Natural Science Foundation of China(project nos.40776001 and 40306001)the Foundation for the Author of National Excellent Doctoral Dissertation of China(grant200354)+2 种基金the Ministry of Education of China,and the Chinese Academy of Sciencessupported by the Chinese Arctic and Antarctic AdministrationSRXRF experiment is supported by BSRF
文摘Penguin and skua in the maritime Antarctic have high salt loadings in the body due to almost exclusive diet consumption of marine invertebrates.However,the storage and turnover of sodium and potassium in these animals are poorly investigated.Here we determined the concentration and microscopic distribution of the two elements in the bones of penguin and skua.The average concentrations of sodium and potassium in penguin bone were comparable with that in skua bone(0.18% and 0.82% for penguin bone;0.19% and 0.76% for skua bone in dry weight).The ratios of sodium to calcium and potassium to calcium(0.0330 and 0.0075 for penguin,0.0335 and 0.0082 for skua in average by weight) were somewhat higher than the reported ratios for terrestrial animals,indicating these marine animals' bone enrichment of salt.The ratios of sodium to potassium in average by weight were 6.75 and 4.65 for penguin and skua,respectively.This value is much lower compared with the bulk sea water ratio of about 27.0,implying that potassium is favorable to reside in the bone rather than sodium.Both sodium and potassium were found to significant correlation with the content of organic materials in bone based upon the intensity of native signal determined by electron paramagnetic resonance(EPR).It was estimated that almost all of potassium is kept within the organic phases,while about 30% of sodium is stored in organic phases and the other 70% within mineral phase.The microscopic distributions of potassium in the cross-section and/or surface were revealed by synchrotron radiation Xray fluorescence(SR-XRF) technique.The ratio of potassium to calcium based upon the SR-XRF intensity counter varied considerably from the surface to the interior,and on the surface the highest concentration of potassium was observed in the middle section with decreasing amounts toward the edge.This indirectly documented that exchange of potassium between fluid and bone organic phase maybe occur.