Lactivicin,a novel inhibitor of bacterial cell wall synthesis,was isolated from the culture fil-trates of microorganism YK-258 and YK-422.It exhibits biological activities similar to those ofthe β-lactam antibiotics,...Lactivicin,a novel inhibitor of bacterial cell wall synthesis,was isolated from the culture fil-trates of microorganism YK-258 and YK-422.It exhibits biological activities similar to those ofthe β-lactam antibiotics,although it does not have a β-lactam ring in its molecule.Since the discovery of lactivicin,hundreds of its derivatives have been synthesized.展开更多
In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_...In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)cathode material of the sodium ion battery(1 C=117 mAh g-1)has a NASICON-type structure,which not only facilitates the rapid migration of sodium ions,but also has a small volume deformation...Na_(3)V_(2)(PO_(4))_(3)(NVP)cathode material of the sodium ion battery(1 C=117 mAh g-1)has a NASICON-type structure,which not only facilitates the rapid migration of sodium ions,but also has a small volume deformation during sodium ion de-intercalation and the main frame mechanism remains unchanged,and thus is seen as an energy storage material for a wide range of applications,but has a limited electronic conductivity due to its structure.In this paper,NVP cathode materials with finer primary particles are successfully prepared using a simple hydrothermal treatment-assisted sol-gel method.The increased pore size of the NVP materials prepared under the hydrothermal process allows for more active sites and more effective resistance to the volume deformation of sodium ions during insertion/extraction processes,effectively facilitating the diffusion of ions and electrons.The Na_(3)V_(2)(PO_(4))_(3) material obtained by the optimized process exhibited good crystallinity in XRD characterization,as well as superior electrochemical properties in a series of electrochemical tests.A specific capacitance of 106.3 mAh g^(-1) at 0.2 C is demonstrated,compared to 96.5 mAh g^(-1) for Na_(3)V_(2)(PO_(4))_(3) without hydrothermal treatment,and cycling performance is also improved with 93%capacity retention.The calculated sodium ion diffusion coefficient(DNa=5.68×10^(-14))obtained after EIS curve fitting of the improved sample illustrates that the pore structure is beneficial to the performance of the Na_(3)V_(2)(PO_(4))_(3)cathode material.展开更多
Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge...Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge measurements. The results show that all the samples exhibit the same cubic spinel phase structure without impurity.The lattice constant and unit cell volume decrease with increasing the sodium dopant amount.As the molar ratio of sodium to manganese(x=n(Na)/n(Mn))increases from 0 to 0.03,the initial discharge capacity of the Li1.05Mn2O4 cathodes decreases from 119.2 to 107.9 mA·h/g,and the discharge capability at large current rate and the storage performance decline dramatically,while cycling performance at room temperature and 55℃are improved.The CV and EIS studies indicate that reversibility of Li1.05Mn2O4 cathodes decreases and the electrochemical impedance increases with increasing the sodium dopant amount.展开更多
The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability i...The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo_2O_4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt,and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized productwas tested as an anode material in a sodium ion battery,was found to exhibit a high reversible specific capacity of 511 m Ahg^(-1) at 100 m Ag^(-1), and deliver high capacity retention after 100 cycles.展开更多
With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges o...With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.展开更多
As a promising cathode material,Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)has attracted wide attention for sodium-ion batteries(SIBs)because of its high operating voltage and high structural stability.However,the low intrinsi...As a promising cathode material,Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)has attracted wide attention for sodium-ion batteries(SIBs)because of its high operating voltage and high structural stability.However,the low intrinsic electronic conductivity and insufficient Na ion mobility of NVPF limit its development.Herein,K-doping NVPF is prepared through a facile ball-milling combined calcination method.The effects of K-doping on the crystal structure,kinetic properties and electrochemical performance are investigated.The results demonstrate that the Na_(2.90)K_(0.10)V_(2)(PO_(4))_(3)F_(3)(K0.10-NVPF)exhibits a high capacity(120.8 mAh g^(-1) at 0.1 C),high rate capability(66 mAh g^(-1) at 30 C)and excellent cycling performance(a capacity retention of 97.5%at 1 C over 500 cycles).Also,the occupation site of K ions in the lattice,electronic band structure and Na-ion transport kinetic property in K-doped NVPF are investigated by density functional theory(DFT)calculations,which reveals that the K-doped NVPF exhibits improved electronic and ionic conductivities,and located K^(+) ions in the lattice to contribute to high reversible capacity,rate capability and cycling stability.Therefore,the K-doped NVPF serves as a promising cathode material for high-energy and high-power SIBs.展开更多
This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-B...This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-BAMBP)than 4-sec-butyl-2-(α-methylbenzyl)phenol(BAMBP).The optimum conditions for the extraction were 1 mol/L t-BAMBP,3:1 volumetric phase ratio(O/A),and two extraction stages.After cross-current extraction,the extraction ratio of potassium reached 90.8%.After scrubbing with deionised water at phase ratio of 4:1 and scrubbing stage of 4,a sodium scrubbing efficiency of 88.2%was obtained.After stripping using 1 mol/L H_(2)SO_(4) at phase ratio of 3:1,the stripping efficiency of potassium reached 94.2%.The potassium/sodium(K/Na)concentration ratio increased 14.3 times from 0.15 in the feed solution to 2.3 in the stripping solution.The efficient separation of potassium from sodium in alkaline solution was achieved via solvent extraction with t-BAMBP.展开更多
NASICON-type structured NaTi2(PO4)3 has been regarded as a promising anode material for non-aqueous and aqueous Na-ion batteries,whereas its sodium storage performance was greatly restricted by its inherent inferior e...NASICON-type structured NaTi2(PO4)3 has been regarded as a promising anode material for non-aqueous and aqueous Na-ion batteries,whereas its sodium storage performance was greatly restricted by its inherent inferior electronic conductivity.In the present work,a two-step carbon modification method using prefabricated carbon spheres as support and phenolic resin as carbon source was proposed to prepare advanced NaTi2(PO4)3/C.The as-prepared composite with carbon spheres displayed a much higher reversible capacity(126.7 mA?h/g vs 106.7 mA?h/g at 0.5C)than the control sample without carbon spheres.Superior rate capability with discharge capacities of 115.1,95.5,80.8 mAh/g at 1C,10C,20C,respectively and long-term cycling stability with capacity retention of 92.4%after 1000 cycles at 5C were also observed.Owing to the designing of two-step carbon modification,although the as-prepared sample shows much smaller surface area,it possesses much better conductive network and more uniform particle distribution,resulting in higher electronic conductivity and faster ionic conductivity,thereby superior sodium storage ability at high rate.展开更多
文摘Lactivicin,a novel inhibitor of bacterial cell wall synthesis,was isolated from the culture fil-trates of microorganism YK-258 and YK-422.It exhibits biological activities similar to those ofthe β-lactam antibiotics,although it does not have a β-lactam ring in its molecule.Since the discovery of lactivicin,hundreds of its derivatives have been synthesized.
基金supported by grants from the National Natural Science Foundation of China(No.22272055)multifunctional platform for innovation of ECNU(EPR).
文摘In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)cathode material of the sodium ion battery(1 C=117 mAh g-1)has a NASICON-type structure,which not only facilitates the rapid migration of sodium ions,but also has a small volume deformation during sodium ion de-intercalation and the main frame mechanism remains unchanged,and thus is seen as an energy storage material for a wide range of applications,but has a limited electronic conductivity due to its structure.In this paper,NVP cathode materials with finer primary particles are successfully prepared using a simple hydrothermal treatment-assisted sol-gel method.The increased pore size of the NVP materials prepared under the hydrothermal process allows for more active sites and more effective resistance to the volume deformation of sodium ions during insertion/extraction processes,effectively facilitating the diffusion of ions and electrons.The Na_(3)V_(2)(PO_(4))_(3) material obtained by the optimized process exhibited good crystallinity in XRD characterization,as well as superior electrochemical properties in a series of electrochemical tests.A specific capacitance of 106.3 mAh g^(-1) at 0.2 C is demonstrated,compared to 96.5 mAh g^(-1) for Na_(3)V_(2)(PO_(4))_(3) without hydrothermal treatment,and cycling performance is also improved with 93%capacity retention.The calculated sodium ion diffusion coefficient(DNa=5.68×10^(-14))obtained after EIS curve fitting of the improved sample illustrates that the pore structure is beneficial to the performance of the Na_(3)V_(2)(PO_(4))_(3)cathode material.
基金Project(2007CB613607) supported by the National Basic Research Program of ChinaProjects(2009FJ1002, 2009CK3062) supported by the Science and Technology Program of Hunan Province, China
文摘Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge measurements. The results show that all the samples exhibit the same cubic spinel phase structure without impurity.The lattice constant and unit cell volume decrease with increasing the sodium dopant amount.As the molar ratio of sodium to manganese(x=n(Na)/n(Mn))increases from 0 to 0.03,the initial discharge capacity of the Li1.05Mn2O4 cathodes decreases from 119.2 to 107.9 mA·h/g,and the discharge capability at large current rate and the storage performance decline dramatically,while cycling performance at room temperature and 55℃are improved.The CV and EIS studies indicate that reversibility of Li1.05Mn2O4 cathodes decreases and the electrochemical impedance increases with increasing the sodium dopant amount.
基金financially supported by the Science Foundation of Sichuan Province(Grant No.2016FZ0070)the Natural Science Foundation of China(NSFC,201476145)the technical support for Materials Characterization from The Analytical and Testing Center of Sichuan University
文摘The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo_2O_4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt,and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized productwas tested as an anode material in a sodium ion battery,was found to exhibit a high reversible specific capacity of 511 m Ahg^(-1) at 100 m Ag^(-1), and deliver high capacity retention after 100 cycles.
基金the National Natural Science Foundation of China(21975154)the Shanghai Municipal Education Commission(Innovation Program(2019-01-07-00-09E00021)+2 种基金Innovative Research Team of High-level Local Universities in Shanghaisupported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher LearningShanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power。
文摘With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.
基金financially funded by the Regional Innovation and Development Joint Fund,National Natural Science Foundation of China(No.U20A20249)National Key Research Program of China(No.2016YFB0901500)。
文摘As a promising cathode material,Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)has attracted wide attention for sodium-ion batteries(SIBs)because of its high operating voltage and high structural stability.However,the low intrinsic electronic conductivity and insufficient Na ion mobility of NVPF limit its development.Herein,K-doping NVPF is prepared through a facile ball-milling combined calcination method.The effects of K-doping on the crystal structure,kinetic properties and electrochemical performance are investigated.The results demonstrate that the Na_(2.90)K_(0.10)V_(2)(PO_(4))_(3)F_(3)(K0.10-NVPF)exhibits a high capacity(120.8 mAh g^(-1) at 0.1 C),high rate capability(66 mAh g^(-1) at 30 C)and excellent cycling performance(a capacity retention of 97.5%at 1 C over 500 cycles).Also,the occupation site of K ions in the lattice,electronic band structure and Na-ion transport kinetic property in K-doped NVPF are investigated by density functional theory(DFT)calculations,which reveals that the K-doped NVPF exhibits improved electronic and ionic conductivities,and located K^(+) ions in the lattice to contribute to high reversible capacity,rate capability and cycling stability.Therefore,the K-doped NVPF serves as a promising cathode material for high-energy and high-power SIBs.
基金Projects(52034002,U1802253)supported by the National Natural Science Foundation of ChinaProject(2019YFC1908401)supported by the National Technology Support Project of China。
文摘This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-BAMBP)than 4-sec-butyl-2-(α-methylbenzyl)phenol(BAMBP).The optimum conditions for the extraction were 1 mol/L t-BAMBP,3:1 volumetric phase ratio(O/A),and two extraction stages.After cross-current extraction,the extraction ratio of potassium reached 90.8%.After scrubbing with deionised water at phase ratio of 4:1 and scrubbing stage of 4,a sodium scrubbing efficiency of 88.2%was obtained.After stripping using 1 mol/L H_(2)SO_(4) at phase ratio of 3:1,the stripping efficiency of potassium reached 94.2%.The potassium/sodium(K/Na)concentration ratio increased 14.3 times from 0.15 in the feed solution to 2.3 in the stripping solution.The efficient separation of potassium from sodium in alkaline solution was achieved via solvent extraction with t-BAMBP.
基金Projects(21671200,21571189)supported by the National Natural Science Foundation of ChinaProjects(2016TP1007,2017TP1001)supported by the Hunan Provincial Science and Technology Plan Project of China+1 种基金Project(2017CL17)supported by the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province,ChinaProject(2016CXS009)supported by Innovation-Driven Project of Central South University,China
文摘NASICON-type structured NaTi2(PO4)3 has been regarded as a promising anode material for non-aqueous and aqueous Na-ion batteries,whereas its sodium storage performance was greatly restricted by its inherent inferior electronic conductivity.In the present work,a two-step carbon modification method using prefabricated carbon spheres as support and phenolic resin as carbon source was proposed to prepare advanced NaTi2(PO4)3/C.The as-prepared composite with carbon spheres displayed a much higher reversible capacity(126.7 mA?h/g vs 106.7 mA?h/g at 0.5C)than the control sample without carbon spheres.Superior rate capability with discharge capacities of 115.1,95.5,80.8 mAh/g at 1C,10C,20C,respectively and long-term cycling stability with capacity retention of 92.4%after 1000 cycles at 5C were also observed.Owing to the designing of two-step carbon modification,although the as-prepared sample shows much smaller surface area,it possesses much better conductive network and more uniform particle distribution,resulting in higher electronic conductivity and faster ionic conductivity,thereby superior sodium storage ability at high rate.