Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume ch...Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability.Herein, reduced graphene oxide-wrapped FeS_2(FeS_2/rGO)composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity,BET surface area, and structural stability of the FeS_2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS_2/rGO composite had a high initial discharge capacity of 1263.2 mAh gg^(-1) at 100 mA gg^(-1) and a high discharge capacity of 344 mAh gg^(-1) at 10 A gg^(-1), demonstrating superior rate performance. After 100 cycles at 100 mA gg^(-1),the discharge capacity remained at 609.5 mAh g^(-1), indicating the excellent cycling stability of the FeS_2/rGO electrode.展开更多
基金supported by National Natural Science Foundation of China (51702138, 51702079)Natural Science Foundation of Jiangsu Province (BK20160213)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability.Herein, reduced graphene oxide-wrapped FeS_2(FeS_2/rGO)composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity,BET surface area, and structural stability of the FeS_2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS_2/rGO composite had a high initial discharge capacity of 1263.2 mAh gg^(-1) at 100 mA gg^(-1) and a high discharge capacity of 344 mAh gg^(-1) at 10 A gg^(-1), demonstrating superior rate performance. After 100 cycles at 100 mA gg^(-1),the discharge capacity remained at 609.5 mAh g^(-1), indicating the excellent cycling stability of the FeS_2/rGO electrode.