期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Corrosion behavior of as-cast Mg–8Li–3Al+xCe alloy in 3.5wt% NaCl solution 被引量:7
1
作者 S.Manivannan P.Dinesh +3 位作者 R.Mahemaa Nandhakumaran MariyaPillai S.P.Kumaresh Babu Srinivasan Sundarrajan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1196-1203,共8页
Mg-8Li-3Al+xCe alloys(x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, ... Mg-8Li-3Al+xCe alloys(x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaC l solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization(PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al(LA83) alloy results in the formation of Al_2Ce intermetallic phase, refines both the α-Mg phase and the Mg_(17)Al_(12) intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce. 展开更多
关键词 magnesium lithium alloys cerium sodium chloride solutions corrosion rate polarization
下载PDF
Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution 被引量:3
2
作者 Yu-bing Guo Chong Li +4 位作者 Yong-chang Liu Li-ming Yu Zong-qing Ma Chen-xi Liu Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期604-612,共9页
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental result... The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower. 展开更多
关键词 high-strength low-alloy steel microstructure corrosion sodium chloride solutions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部