Sodium gluconate(SG)is reported as an electrolyte additive for rechargeable aqueous zinc batteries.The SG addition is proposed to modulate the nucleation overpotential and plating behaviors of Zn by forming a shieldin...Sodium gluconate(SG)is reported as an electrolyte additive for rechargeable aqueous zinc batteries.The SG addition is proposed to modulate the nucleation overpotential and plating behaviors of Zn by forming a shielding buffer layer because of the adsorption priority and large steric hindrance effect,which contributes to limited rampant Zn^(2+)diffusion and mitigated hydrogen evolution and corrosion.With the introduction of 30 mmol/L SG in 2 mol/L ZnSO_(4)electrolyte,the Zn anode harvests a reversible cycling of 1200 h at 5 mA/cm^(2)and a high average Coulombic efficiency of Zn plating/stripping(99.6%).Full cells coupling Zn anode with V_(2)O_(5)·1.6H_(2)O or polyaniline cathode far surpass the SG additivefree batteries in terms of cycle stability and rate capability.This work provides an inspiration for design of a high-effective and low-cost electrolyte additive towards Zn-based energy storage devices.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21925503 and 22309167)the PhD Research Fund Project of Zhengzhou University of Light Industry,China(No.2022BSJJZK10)+2 种基金the Science and Technology Project of Henan Province,China(No.242102241045)the Natural Science Foundation of Henan Province,China(No.242300420206)the Specially-Appointed Professor Project of Zhengzhou University of Light Industry,China.
文摘Sodium gluconate(SG)is reported as an electrolyte additive for rechargeable aqueous zinc batteries.The SG addition is proposed to modulate the nucleation overpotential and plating behaviors of Zn by forming a shielding buffer layer because of the adsorption priority and large steric hindrance effect,which contributes to limited rampant Zn^(2+)diffusion and mitigated hydrogen evolution and corrosion.With the introduction of 30 mmol/L SG in 2 mol/L ZnSO_(4)electrolyte,the Zn anode harvests a reversible cycling of 1200 h at 5 mA/cm^(2)and a high average Coulombic efficiency of Zn plating/stripping(99.6%).Full cells coupling Zn anode with V_(2)O_(5)·1.6H_(2)O or polyaniline cathode far surpass the SG additivefree batteries in terms of cycle stability and rate capability.This work provides an inspiration for design of a high-effective and low-cost electrolyte additive towards Zn-based energy storage devices.