A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and th...A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and the combination of ZVI/AC- MDEL/NaCIO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaCIO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaCIO, we found that in the ZVI/AC-MEDL/NaCIO process, ZVI/AC could break the azo bond firstly and then MEDLfNaCIO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.展开更多
Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon sub- strates. These modified electrodes were used as anodes for the generation of sodium hypochlo...Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon sub- strates. These modified electrodes were used as anodes for the generation of sodium hypochlorite (NaOC1) from sodium chloride solution. Different operating conditions and factors affecting the treatment process of NaOC1 generation, including current density, pH values, con- ductive electrolytes, and electrolysis time, were studied and optimized. By comparison the C/PbO2 electrode shows a higher efficiency than the Pb/PbO2 electrode for the generation of NaOC1.展开更多
The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypoc...The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.展开更多
This study evaluated the effects of sodium hypochlorite(NaOCl) with different concentrations and exposure time on the structural, compositional and mechanical properties of human dentin in vitro. Sixty dentin slabs ...This study evaluated the effects of sodium hypochlorite(NaOCl) with different concentrations and exposure time on the structural, compositional and mechanical properties of human dentin in vitro. Sixty dentin slabs were obtained from freshly extracted premolars, randomly distributed into four groups(n=15), and treated with 1%, 5%, 10% NaOCl and distilled water(control group), respectively, for a total of 60 min. Attenuated total reflection infrared(ATR-IR) spectroscopy, Raman spectroscopy and X-ray diffraction(XRD) were carried out before, 10 min and 60 min after the treatment. Scanning electron microscopy(SEM) and flexural strength test were conducted as well. The results showed that dentins experienced morphological alterations in the NaOCl groups, but not in the control group. Two-way repeated-measures analysis of variance revealed that the carbonate:mineral ratio(C:M), Raman relative intensity(RRI), a-axis, c-axis length and full width at half maximum(FWHM) with the increase of time and concentration in the NaOCl groups were not significantly different from those in the control group(P〉0.05). Nevertheless, the mineral:matrix ratio(M:M) increased and the flexural strength declined with the increase of concentration and the extension of time in the NaOCl groups(P〈0.05). Additionally, it was found that the M:M and the flexural strength remained unchanged after 1% NaOCl treatment(P〉0.05), and the morphology changes were unnoticeable within 10 min in 1% NaOCl group. These results indicated that NaOCl has no significant effects on the inorganic mineral of human dentin; but it undermines and eliminates the organic content concentration-and time-dependently, which in turn influences the flexural strength and toughness of dentins. In addition, an irrigation of 1% NaOCl within 10 min can minimize the effects of NaOCl on the structural and mechanical properties of dentin during root canal treatment.展开更多
Anodic films were successfully fabricated on Ti6A14V alloy by anodic oxidation method in an environmental friendly electrolyte with and without sodium hypochlorite. The anodic films were characterized by means of the ...Anodic films were successfully fabricated on Ti6A14V alloy by anodic oxidation method in an environmental friendly electrolyte with and without sodium hypochlorite. The anodic films were characterized by means of the scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Results revealed that the addition of sodium hypochlorite leads to the ultrafast growth of oxide films, and results in the significant changes of morphology and thickness. The influence of sodium hypochlorite on formation and crystallization of oxide films as a function of anodizing time was discussed. Meanwhile, potentiodynamic electrochemical tests and dry sliding wear tests were performed to evaluate the corrosion resistance and tribological properties of oxide films. It was found that the oxide film fabricated with the existence of sodium hypochlorite had improved corrosion resistance and tribological properties than the one formed without sodium hypochlorite. Moreover, the effect mechanism of sodium hypochlorite on the growth rate and surface morphologies of oxide films during the anodizing process was discussed. It was found that hypochlorite ions participated in the reaction on anode which causes the rapid growth of oxide films and then affect the whole anodizing process.展开更多
To investigate the structural features and provide an alternative method for high value-added utilization of coal, Lingwu coal was first extracted with organic solvent at room temperature. Then its extraction residue ...To investigate the structural features and provide an alternative method for high value-added utilization of coal, Lingwu coal was first extracted with organic solvent at room temperature. Then its extraction residue was oxidized in aqueous sodium hypochlorite(ASHC) under mild conditions. The effects of oxidation conditions, such as temperature, reaction time, the ratio of Lingwu coal extraction residue(LCER, g) to ASHC(m L) and p H value, on the product distributions and compositions were investigated. The results of gas chromatography/mass spectrometry(GC/MS) suggested that 53 kinds of methyl esterified products were detected in total, and benzene carboxylic acids were the main oxidation products, while chloro-substituted benzene carboxylic acids were the main by-products. Higher yield and fewer kinds of organic acids could be obtained at lower p H value, especially for the main objective product, benzene carboxylic acids.展开更多
Sodium hypochlorite(NaClO)is a commonly applied cleaning agent for ultrafiltration membranes in water and wastewater treatment.Long-term exposure to NaClO might change the properties and performance of polymeric membr...Sodium hypochlorite(NaClO)is a commonly applied cleaning agent for ultrafiltration membranes in water and wastewater treatment.Long-term exposure to NaClO might change the properties and performance of polymeric membranes,and ultimately shorten membrane lifespan.Active species in NaClO solution vary with solution pH,and the aging effects can change depending on the membrane material.In this study,the aging of polyvinylidene fluoride(PVDF)and polyethersulfone(PES)membranes by NaClO at pH 3–11 was investigated by examining variations in chemical composition,surface charge,surface morphology,mechanical strength,permeability,and retention ability.Polyvinyl pyrrolidone(PVP),which was blended in both membranes,was oxidized and dislodged due to NaClO aging at all investigated pH values,but the oxidation products and dislodgement ratio of PVP varied with solution pH.For the PVDF membrane,NaClO aging at pH 3–11 caused a moderate increase in permeability and decreased retention due to the oxidation and release of PVP.The tensile strength decreased only at pH 11 because of the defluorination of PVDF molecules.For the PES membrane,NaClO aging at all investigated pH resulted in chain scission of PES molecules,which was favored at pH 7 and 9,potentially due to the formation of free radicals.Therefore,a decrease in tensile strength and retention ability,as well as an increase in permeability,occurred in the PES membrane for NaClO aging at pH 3–11.Overall,the results can provide a basis for selecting chemical cleaning conditions for PVDF and PES membranes.展开更多
The pyrolysis treatment of lignites could remove thermal-unstable aliphatic structures but enrich aromatic structures in resulting pyrolysis residues,which would facilitate producing benzene polycarboxylic acids(BPCAs...The pyrolysis treatment of lignites could remove thermal-unstable aliphatic structures but enrich aromatic structures in resulting pyrolysis residues,which would facilitate producing benzene polycarboxylic acids(BPCAs).Herein,the demineralized Zhaotong lignite(DZL)was pyrolyzed at 250-550℃ to afford the corresponding pyrolysis residues.Subsequently,DZL and its pyrolysis residues were subjected to oxidation with aqueous sodium hypochlorite.By XRD,FTIR,and element analyses,it was found that the content and polycondensation degree of aromatic structures simultaneously increased with increasing pyrolysis temperature.Furthermore,the yield and selectivity of BPCAs both increased along with raising pyrolysis temperature in resulting products from fully oxidation of DZL and its pyrolysis residues.Based on the distribution of BPCAs,peri-condensed aromatic structures were dominant in DZL and its DPRs,and obviously increased with increasing pyrolysis temperature.More interestingly,good correlation was found between the yield of BPCAs and aromaticity parameters.Meanwhile,the yield of benzenepentacrboxylic acid was well associated with polycondensation degree parameters.展开更多
Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas.Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 1o L.This st...Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas.Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 1o L.This study evaluated sodium hypochlorite production through electrolysis in a 22-L prototype and identified the optimal operating parameters.Tests were performed using graphite electrodes with areas of 68.4 cm^(2) at the laboratory scale and 1865.0 cm^(2) at the prototype scale.A design for experiments with different operating times,chloride concentrations,and electric current intensities was developed.The optimal operating time,sodium chloride concentration,and current intensity at the laboratory scale were 120 min,150 g of chloride per liter,and 3 A,respectively,leading to the production of 5.02 g/L of the disinfectant with an energy efficiency of 12.21 mg of Cl_(2) per kilojoule.At the prototype scale,the maximum sodium hypochlorite concentration of 3.99 g of chloride per liter was achieved with an operating time of 120 min,a sodium chloride concentration of 100 g of chloride per liter,and a current intensity of 70 A,reaching an energy efficiency of 42.56 mg of Cl_(2) per kilojoule.In addition,this study evaluated the influences of the chloride concentration,current intensity,and operating time on the production of sodium hypochlorite at the two scales,and formulated the equations showing the trends of sodium hypochlorite production and energy efficiency in the electrochemical systems.The 22-L prototype model for production of this oxidizing substance is promising for disinfection of large volumes of water in areas that are difficult to access.展开更多
This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping.It reviews commonly used endodontic irrigant,namely sodium hypochlorite(NaOCl),herbal extra...This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping.It reviews commonly used endodontic irrigant,namely sodium hypochlorite(NaOCl),herbal extracts,chlorhexidine(CHX),and chelating agents,highlighting their properties,applications,and potential drawbacks.NaOCl,a key antimicrobial agent,demonstrates effectiveness against various microorganisms but poses challenges such as high cytotoxicity.Herbal extracts,gaining recognition in endodontics,present an alternative with potential advantages in preserving dentin integrity.CHX,known for its broad-spectrum antimicrobial activity,is discussed in both liquid and gel formulations,emphasizing its role in reducing smear layer formation and preserving hybrid layer durability.Chelating agents,specifically ethylenediaminetetraacetic acid and citric acid,play a vital role in removing the smear layer,enhancing dentin permeability,and facilitating the penetration of antimicrobial agents.The review article underscores the importance of careful application and consideration of each irrigant's properties to ensure safe and effective endodontic procedures.It serves as a valuable guide for clinicians in selecting appropriate irrigants based on specific treatment requirements.展开更多
To investigate the corrosion behaviors and antibacterial effects of sodium hypochlorite(NaClO)and hydrogen peroxide silver ion(HPSI)disinfectants with different concentrations against dental unit waterlines and provid...To investigate the corrosion behaviors and antibacterial effects of sodium hypochlorite(NaClO)and hydrogen peroxide silver ion(HPSI)disinfectants with different concentrations against dental unit waterlines and provide guidance and reference for the use of chemical disinfectants,polyurethane tubes were immersed in ultrapure water(control group),0.1%NaClO,0.5%NaClO,1.0%NaClO,2.5%HPSI,5.0%HPSI,and 10%HPSI solutions for 6,12,and 18 weeks.Contact angles and Fourier transform infrared spectra were detected.Surface morphologies were observed using scanning electron microscopy and antibacterial activity was evaluated using Gram-positive Staphylococcus aureus(S.aureus).The results showed that sodium hypochlorite and hydrogen peroxide silver ion disinfectants presented good antibacterial activity against S.aureus.However,sodium hypochlorite could cause serious damage to the water pipes where corrosion pits and cracks were observed,and increasing the concentration of sodium hypochlorite could accelerate the corrosion process.Hydrogen peroxide silver ion disinfectants had no obvious damage to the water pipes.Therefore,hydrogen peroxide silver ion disinfectants are recommended to use for controlling bacterial infection in dental unit waterlines which can reduce the damage to the water pipes.展开更多
With fresh-cut grass carp belly as the test material, the antibacterial con- ditions of a disinfection agent sodium hypochlorite were optimized. In addition, the shelf lives of various grass carp products were compare...With fresh-cut grass carp belly as the test material, the antibacterial con- ditions of a disinfection agent sodium hypochlorite were optimized. In addition, the shelf lives of various grass carp products were compared after disinfection, so as to provide certain basis for the processing of fresh-cut grass carp products. The re- sults showed that the optimal disinfection conditions of sodium hypochlorite were as follows: concentration 300 mg/L, soak time 5 min and solid-liquid ratio 1 g : 5 ml. Under the optimal disinfection conditions, the inhibition rates of total bacteria and Pseudomonas reached 83% and 81%, respectively. The shelf life of refrigerated fresh-cut grass carp belly disinfected by sodium hypochlorite and packed in bag filled with gases could be extended as long as 11 d, which was increased by 5 d (83%) compared with that in the control group. The disinfection by sodium hypochlorite could significantly reduce the initial bacterial colony number and improve the sensory quality of fresh-cut grass carp belly, as well as extend the shelf life of refrigerated and modified gas-packed grass carp belly.展开更多
The aim of this ex vivo study was to evaluate the infiltration capability and rate of microleakage of a low-viscous resin infiltrant combined with a flowable composite resin(RI/CR) when used with deproteinised and etc...The aim of this ex vivo study was to evaluate the infiltration capability and rate of microleakage of a low-viscous resin infiltrant combined with a flowable composite resin(RI/CR) when used with deproteinised and etched occlusal subsurface lesions(International Caries Detection and Assessment System code 2). This combined treatment procedure was compared with the exclusive use of flowable composite resin(CR) for fissure sealing. Twenty premolars and 20 molars revealing non-cavitated occlusal carious lesions were randomly divided into two groups and were meticulously cleaned and deproteinised using Na OCl(2%). After etching with HCl(15%), 10 premolar and 10 molar lesions were infiltrated(Icon/DMG; rhodamine B isothiocyanate(RITC)-labelled) followed by fissure sealing(G-?nial Flo/GC; experimental group, RI/CR). In the control group(CR), the carious fissures were only sealed. Specimens were cut perpendicular to the occlusal surface and through the area of the highest demineralisation(DIAGNOdent pen, Ka Vo). Using confocal laser-scanning microscopy, the specimens were assessed with regard to the percentage of caries infiltration, marginal adaption and internal integrity. Within the CR group, the carious lesions were not infiltrated. Both premolar(57.9% ± 23.1%) and molar lesions(35.3% ± 22.1%) of the RI/CR group were uniformly infiltrated to a substantial extent, albeit with significant differences(P = 0.034). Moreover, microleakage(n = 1) and the occurrence of voids(n = 2) were reduced in the RI/CR group compared with the CR group(5 and 17 specimens,respectively). The RI/CR approach increases the initial quality of fissure sealing and is recommended for the clinical control of occlusal caries.展开更多
Sodium hypochlorite was used to treat the standard molybdenum concentrates; the oxidization conditions for sodium hypochlorite were investigated, and the electro-oxidation process was performed. The results indicate t...Sodium hypochlorite was used to treat the standard molybdenum concentrates; the oxidization conditions for sodium hypochlorite were investigated, and the electro-oxidation process was performed. The results indicate that in the suitable conditions, such as temperature around 25℃, NaCl concentration 4.0mol/L, mass ratio of ore slurry liquid to solid (mL/mS) 20, electric charge per gram Mo 0.522C, pH value of original slurry 8, anodic current density 700A·m-2 (cell potential 2.72.9V), the Mo leaching rate and the current efficiency reach 98% and 36%, respectively. In order to overcome some shortages of the electro-oxidation process, such as low current efficiency, low Mo concentration in the leaching solution, ultrasonic was adopted to intensify the leaching process. The results show that the Mo leaching rate exceeds 98%, current efficiency increases from 36% to 50% and the Mo concentration in the leaching solution reaches about 60g/L at low mL/mS of 8 and low electric charge of 0.373C.展开更多
A facile and efficient procedure has been developed systematically for the oxidative cleavage of cinna-maldehyde to benzaldehyde by sodium hypochlorite with water as the only solvent in the presence of β-cyclodextrin...A facile and efficient procedure has been developed systematically for the oxidative cleavage of cinna-maldehyde to benzaldehyde by sodium hypochlorite with water as the only solvent in the presence of β-cyclodextrin (abbreviated as β-CD). Different factors influencing cinnamaldehyde oxidation e.g. reaction temperature, the amount of catalyst and oxidant, have been investigated. The yield of benzaldehyde reaches 76% under the optimum conditions (333 K, 4 h, molar ratio of cinnamaldehyde to β-CD is 1:1). Furthermore, a feasible reaction mecha-nism including the formation of benzaldehyde and the two main byproducts (phenylacetaldehyde and epoxide of cinnamaldehyde) has been proposed.展开更多
To improve the durability as well as to reduce the cost of anodes, the IrO2+MnO2 composite coating anodes for NaCIO production were prepared by thermal decomposition. Scanning electron microscopy (SEM), energy disp...To improve the durability as well as to reduce the cost of anodes, the IrO2+MnO2 composite coating anodes for NaCIO production were prepared by thermal decomposition. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD) were carried out to investigate the morphologies, element distribution, and microstructure. The anodic polarization curves were employed to study the effect of sintering temperature on the Cl2 evolution reaction (CER) of the electrodes. The accelerated life tests (ALT) and electrochemical impedance spectroscopy measurement (EIS) were utilized to investigate the stability. The rules of NaCIO production were also studied by the static electrolysis experiment. The results indicate that sintering temperature has a significant influence on the CER properties as well as the ALT values of the electrodes. The electrode prepared at 400℃ has the best CER properties and the longest ALT value.展开更多
Sodium hypochlorite and ozone are the principal active substances and usually employed in ballast water management systems. In the present study, the authors focus on the effect of these active substances to the maaix...Sodium hypochlorite and ozone are the principal active substances and usually employed in ballast water management systems. In the present study, the authors focus on the effect of these active substances to the maaix polymer of coating. In order to obtain such information, the authors investigated the penetration of active substances to the polymer from cross section of specimens introduced by SAICAS (surface and interracial cutting analysis system), followed by FT-IR-ATR (Fourier transform infrared and attenuated total reflectance) spectroscopy analysis from Z direction of cross section. The corrosion test of coating panels by these active substances (control as artificial seawater) has been conducted for 120 days. The results show that the depth profile of each active substance is around few dozens of micrometers from coating surface. The criteria of corrosion test cannot be determined by these results due to lacking in actual corrosion data immersed for 15 years under active substances. However, the authors evaluated the effect on ballast tank coating systems by active substances using analytical methods of SAICAS and FT-IR-ATR spectroscopy.展开更多
According to the chemical and phase composition of the nickel-copper-iron matte containing precious metals and the progress in enrichment of precious metals from the nickel-copper-iron matte containing precious metals...According to the chemical and phase composition of the nickel-copper-iron matte containing precious metals and the progress in enrichment of precious metals from the nickel-copper-iron matte containing precious metals at home and abroad, this paper put forward the process route of enrichment of precious metals and selectively leaching of base metals from the nickel-copper-iron matte by sulfuric acid and sodium hypochlorite. The effects of particle size, leaching temperature, leaching time, amount of sulfuric acid and sodium hypochlorite on the leaching rate of nickel, cobalt, copper and iron are mainly discussed. The results show that raw material particle size has significantly effects on the leaching rate of base metals, high leaching rate of base metals and enrichment of precious metals are obtained with the suitable particle size. Through the experiments, the reasonable experiment parameters and conditions were determined as fellows: particle size of-200 to +250 mesh, leaching temperature 95℃ , leaching time 5 h, sulfuric acid concentration 30%, adding amount of sodium hypochlorite 3 times of matte weight. Under these experiment parameters and conditions, the leaching rate of nickel, cobalt, copper and iron were 97.39%, 96.24%, 98.30% and 99.01%, respectively. The content of nickel, cobalt, copper, iron in the leaching residues was 8.15%, 0.23%, 1.40% and 0.24%, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching residues was 247 g/t, 521 g/t, 112 g/t, 494 g/t and 24 g/t, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching solution was <0.0005 g/L, 0.0023 g/L, 0.0007 g/L, <0.0005 g/L and 0.00017 g/L, respectively. This process has advantages as follows: a small investment, simple technology, high enrichment efficiency.展开更多
A convenient method for the chlorination in allylic position was developed by using the aqueous solution of sodium hypochlorite(2%_5% active chlorine) and an acid as chlorination reagent in a diphase system. The metho...A convenient method for the chlorination in allylic position was developed by using the aqueous solution of sodium hypochlorite(2%_5% active chlorine) and an acid as chlorination reagent in a diphase system. The method has the advantage of cheap reagents, mild reaction conditions and good yields. The quantity and the feeding rate of the chlorination reagent can be controlled easily. The method is particularly suitable for the chlorination in laboratories.展开更多
We put forward a method of rapid preparation of chloride selective electrode(Ag/AgCl electrode) by dipping silver wire into sodium hypochlorite solution. The electrodes were prepared through different immersion time...We put forward a method of rapid preparation of chloride selective electrode(Ag/AgCl electrode) by dipping silver wire into sodium hypochlorite solution. The electrodes were prepared through different immersion time. The properties of the electrodes, such as Nernst response, response time and longterm stability, were tested in simulated concrete pore solutions(SCPS). Moreover, the surface morphology of the electrodes was also detected after immersion in solutions over three months. The experimental results reveal that the Ag/AgCl electrode with the fabrication time of 20 minutes(E-20) which is recommended to work as the chloride ion selective electrode has the best performance. Compared to that fabricated by the electrolytic process(E-EP), E-20 can be manufactured in mass. The method has almost the same good performance of Nernst response as E-EP, and has a better response time which is less than 25 seconds. The method also shows a better good long-term stability in SCPS containing chloride ions over three months.展开更多
基金supported by the Major Projects on Control and Rectification of Water Body Pollution (Water Special Project) (No.2009ZX07010-001,2008ZX07526-001)the National Basic Research Program (973) of China (No.2008CB418201)
文摘A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and the combination of ZVI/AC- MDEL/NaCIO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaCIO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaCIO, we found that in the ZVI/AC-MEDL/NaCIO process, ZVI/AC could break the azo bond firstly and then MEDLfNaCIO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.
文摘Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon sub- strates. These modified electrodes were used as anodes for the generation of sodium hypochlorite (NaOC1) from sodium chloride solution. Different operating conditions and factors affecting the treatment process of NaOC1 generation, including current density, pH values, con- ductive electrolytes, and electrolysis time, were studied and optimized. By comparison the C/PbO2 electrode shows a higher efficiency than the Pb/PbO2 electrode for the generation of NaOC1.
基金the 11th Five-Year Plan of the National Scientific and Technological Program of China(No. 2007BAB22B01)the National Natural Science Foundation of China(No.50704036).
文摘The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.
基金supported by the National Natural Science Foundation of China(No.81470771,No.81500887)the Natural Science Foundation of Hubei Province(No.2013CFA068)
文摘This study evaluated the effects of sodium hypochlorite(NaOCl) with different concentrations and exposure time on the structural, compositional and mechanical properties of human dentin in vitro. Sixty dentin slabs were obtained from freshly extracted premolars, randomly distributed into four groups(n=15), and treated with 1%, 5%, 10% NaOCl and distilled water(control group), respectively, for a total of 60 min. Attenuated total reflection infrared(ATR-IR) spectroscopy, Raman spectroscopy and X-ray diffraction(XRD) were carried out before, 10 min and 60 min after the treatment. Scanning electron microscopy(SEM) and flexural strength test were conducted as well. The results showed that dentins experienced morphological alterations in the NaOCl groups, but not in the control group. Two-way repeated-measures analysis of variance revealed that the carbonate:mineral ratio(C:M), Raman relative intensity(RRI), a-axis, c-axis length and full width at half maximum(FWHM) with the increase of time and concentration in the NaOCl groups were not significantly different from those in the control group(P〉0.05). Nevertheless, the mineral:matrix ratio(M:M) increased and the flexural strength declined with the increase of concentration and the extension of time in the NaOCl groups(P〈0.05). Additionally, it was found that the M:M and the flexural strength remained unchanged after 1% NaOCl treatment(P〉0.05), and the morphology changes were unnoticeable within 10 min in 1% NaOCl group. These results indicated that NaOCl has no significant effects on the inorganic mineral of human dentin; but it undermines and eliminates the organic content concentration-and time-dependently, which in turn influences the flexural strength and toughness of dentins. In addition, an irrigation of 1% NaOCl within 10 min can minimize the effects of NaOCl on the structural and mechanical properties of dentin during root canal treatment.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodic films were successfully fabricated on Ti6A14V alloy by anodic oxidation method in an environmental friendly electrolyte with and without sodium hypochlorite. The anodic films were characterized by means of the scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Results revealed that the addition of sodium hypochlorite leads to the ultrafast growth of oxide films, and results in the significant changes of morphology and thickness. The influence of sodium hypochlorite on formation and crystallization of oxide films as a function of anodizing time was discussed. Meanwhile, potentiodynamic electrochemical tests and dry sliding wear tests were performed to evaluate the corrosion resistance and tribological properties of oxide films. It was found that the oxide film fabricated with the existence of sodium hypochlorite had improved corrosion resistance and tribological properties than the one formed without sodium hypochlorite. Moreover, the effect mechanism of sodium hypochlorite on the growth rate and surface morphologies of oxide films during the anodizing process was discussed. It was found that hypochlorite ions participated in the reaction on anode which causes the rapid growth of oxide films and then affect the whole anodizing process.
基金Supported by the National Basic Research Program of China("973" Program,No.2011CB215302)National Natural Science Foundation of China(No.21206188 and 21106177)+1 种基金China Postdoctoral Science Foundation(No.2012M511339)Fundamental Research Funds for the Central Universities(No.2011QNA23)
文摘To investigate the structural features and provide an alternative method for high value-added utilization of coal, Lingwu coal was first extracted with organic solvent at room temperature. Then its extraction residue was oxidized in aqueous sodium hypochlorite(ASHC) under mild conditions. The effects of oxidation conditions, such as temperature, reaction time, the ratio of Lingwu coal extraction residue(LCER, g) to ASHC(m L) and p H value, on the product distributions and compositions were investigated. The results of gas chromatography/mass spectrometry(GC/MS) suggested that 53 kinds of methyl esterified products were detected in total, and benzene carboxylic acids were the main oxidation products, while chloro-substituted benzene carboxylic acids were the main by-products. Higher yield and fewer kinds of organic acids could be obtained at lower p H value, especially for the main objective product, benzene carboxylic acids.
基金supported by the National Natural Science Foundation of China(No.51608427)the Natural Science Foundation of Shaanxi Province(No.2020JQ-672)+1 种基金the Key Research and Development Program of Shaanxi province(No.2019ZDLSF06-01)the Youth Innovation Team of Shaanxi Universities Funded by Education Department of Shaanxi Province。
文摘Sodium hypochlorite(NaClO)is a commonly applied cleaning agent for ultrafiltration membranes in water and wastewater treatment.Long-term exposure to NaClO might change the properties and performance of polymeric membranes,and ultimately shorten membrane lifespan.Active species in NaClO solution vary with solution pH,and the aging effects can change depending on the membrane material.In this study,the aging of polyvinylidene fluoride(PVDF)and polyethersulfone(PES)membranes by NaClO at pH 3–11 was investigated by examining variations in chemical composition,surface charge,surface morphology,mechanical strength,permeability,and retention ability.Polyvinyl pyrrolidone(PVP),which was blended in both membranes,was oxidized and dislodged due to NaClO aging at all investigated pH values,but the oxidation products and dislodgement ratio of PVP varied with solution pH.For the PVDF membrane,NaClO aging at pH 3–11 caused a moderate increase in permeability and decreased retention due to the oxidation and release of PVP.The tensile strength decreased only at pH 11 because of the defluorination of PVDF molecules.For the PES membrane,NaClO aging at all investigated pH resulted in chain scission of PES molecules,which was favored at pH 7 and 9,potentially due to the formation of free radicals.Therefore,a decrease in tensile strength and retention ability,as well as an increase in permeability,occurred in the PES membrane for NaClO aging at pH 3–11.Overall,the results can provide a basis for selecting chemical cleaning conditions for PVDF and PES membranes.
基金supported by the National Natural Science Foundation of China(Grant No.21706172)NSFC-Shanxi joint fund for coal-based low carbon(Grant No.U1610223 and U1710102)+1 种基金Key Research and Development(R&D)Projects of Shanxi Province(201903D321061)State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2021-K79).
文摘The pyrolysis treatment of lignites could remove thermal-unstable aliphatic structures but enrich aromatic structures in resulting pyrolysis residues,which would facilitate producing benzene polycarboxylic acids(BPCAs).Herein,the demineralized Zhaotong lignite(DZL)was pyrolyzed at 250-550℃ to afford the corresponding pyrolysis residues.Subsequently,DZL and its pyrolysis residues were subjected to oxidation with aqueous sodium hypochlorite.By XRD,FTIR,and element analyses,it was found that the content and polycondensation degree of aromatic structures simultaneously increased with increasing pyrolysis temperature.Furthermore,the yield and selectivity of BPCAs both increased along with raising pyrolysis temperature in resulting products from fully oxidation of DZL and its pyrolysis residues.Based on the distribution of BPCAs,peri-condensed aromatic structures were dominant in DZL and its DPRs,and obviously increased with increasing pyrolysis temperature.More interestingly,good correlation was found between the yield of BPCAs and aromaticity parameters.Meanwhile,the yield of benzenepentacrboxylic acid was well associated with polycondensation degree parameters.
基金supported by the America University,the Swiss Agency for Development and Cooperation,and the Central Technical Institute.
文摘Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas.Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 1o L.This study evaluated sodium hypochlorite production through electrolysis in a 22-L prototype and identified the optimal operating parameters.Tests were performed using graphite electrodes with areas of 68.4 cm^(2) at the laboratory scale and 1865.0 cm^(2) at the prototype scale.A design for experiments with different operating times,chloride concentrations,and electric current intensities was developed.The optimal operating time,sodium chloride concentration,and current intensity at the laboratory scale were 120 min,150 g of chloride per liter,and 3 A,respectively,leading to the production of 5.02 g/L of the disinfectant with an energy efficiency of 12.21 mg of Cl_(2) per kilojoule.At the prototype scale,the maximum sodium hypochlorite concentration of 3.99 g of chloride per liter was achieved with an operating time of 120 min,a sodium chloride concentration of 100 g of chloride per liter,and a current intensity of 70 A,reaching an energy efficiency of 42.56 mg of Cl_(2) per kilojoule.In addition,this study evaluated the influences of the chloride concentration,current intensity,and operating time on the production of sodium hypochlorite at the two scales,and formulated the equations showing the trends of sodium hypochlorite production and energy efficiency in the electrochemical systems.The 22-L prototype model for production of this oxidizing substance is promising for disinfection of large volumes of water in areas that are difficult to access.
文摘This review article explores the fundamental principles of modern endodontics with a focus on root canal cleaning and shaping.It reviews commonly used endodontic irrigant,namely sodium hypochlorite(NaOCl),herbal extracts,chlorhexidine(CHX),and chelating agents,highlighting their properties,applications,and potential drawbacks.NaOCl,a key antimicrobial agent,demonstrates effectiveness against various microorganisms but poses challenges such as high cytotoxicity.Herbal extracts,gaining recognition in endodontics,present an alternative with potential advantages in preserving dentin integrity.CHX,known for its broad-spectrum antimicrobial activity,is discussed in both liquid and gel formulations,emphasizing its role in reducing smear layer formation and preserving hybrid layer durability.Chelating agents,specifically ethylenediaminetetraacetic acid and citric acid,play a vital role in removing the smear layer,enhancing dentin permeability,and facilitating the penetration of antimicrobial agents.The review article underscores the importance of careful application and consideration of each irrigant's properties to ensure safe and effective endodontic procedures.It serves as a valuable guide for clinicians in selecting appropriate irrigants based on specific treatment requirements.
基金Funded by the Xuhui District Medical Research Project(No.SHXH201913)the Clinical Research on Health Industry of Shanghai Municipal Health Commission(No.202040085)+1 种基金the Shanghai Medical Key Specialty(No.ZK2019B12)the National Natural Science Foundation of China(No.32000945)。
文摘To investigate the corrosion behaviors and antibacterial effects of sodium hypochlorite(NaClO)and hydrogen peroxide silver ion(HPSI)disinfectants with different concentrations against dental unit waterlines and provide guidance and reference for the use of chemical disinfectants,polyurethane tubes were immersed in ultrapure water(control group),0.1%NaClO,0.5%NaClO,1.0%NaClO,2.5%HPSI,5.0%HPSI,and 10%HPSI solutions for 6,12,and 18 weeks.Contact angles and Fourier transform infrared spectra were detected.Surface morphologies were observed using scanning electron microscopy and antibacterial activity was evaluated using Gram-positive Staphylococcus aureus(S.aureus).The results showed that sodium hypochlorite and hydrogen peroxide silver ion disinfectants presented good antibacterial activity against S.aureus.However,sodium hypochlorite could cause serious damage to the water pipes where corrosion pits and cracks were observed,and increasing the concentration of sodium hypochlorite could accelerate the corrosion process.Hydrogen peroxide silver ion disinfectants had no obvious damage to the water pipes.Therefore,hydrogen peroxide silver ion disinfectants are recommended to use for controlling bacterial infection in dental unit waterlines which can reduce the damage to the water pipes.
基金Supported by Scientific Research Foundation of the Education Department of Hubei Province,China(Q20141701)~~
文摘With fresh-cut grass carp belly as the test material, the antibacterial con- ditions of a disinfection agent sodium hypochlorite were optimized. In addition, the shelf lives of various grass carp products were compared after disinfection, so as to provide certain basis for the processing of fresh-cut grass carp products. The re- sults showed that the optimal disinfection conditions of sodium hypochlorite were as follows: concentration 300 mg/L, soak time 5 min and solid-liquid ratio 1 g : 5 ml. Under the optimal disinfection conditions, the inhibition rates of total bacteria and Pseudomonas reached 83% and 81%, respectively. The shelf life of refrigerated fresh-cut grass carp belly disinfected by sodium hypochlorite and packed in bag filled with gases could be extended as long as 11 d, which was increased by 5 d (83%) compared with that in the control group. The disinfection by sodium hypochlorite could significantly reduce the initial bacterial colony number and improve the sensory quality of fresh-cut grass carp belly, as well as extend the shelf life of refrigerated and modified gas-packed grass carp belly.
文摘The aim of this ex vivo study was to evaluate the infiltration capability and rate of microleakage of a low-viscous resin infiltrant combined with a flowable composite resin(RI/CR) when used with deproteinised and etched occlusal subsurface lesions(International Caries Detection and Assessment System code 2). This combined treatment procedure was compared with the exclusive use of flowable composite resin(CR) for fissure sealing. Twenty premolars and 20 molars revealing non-cavitated occlusal carious lesions were randomly divided into two groups and were meticulously cleaned and deproteinised using Na OCl(2%). After etching with HCl(15%), 10 premolar and 10 molar lesions were infiltrated(Icon/DMG; rhodamine B isothiocyanate(RITC)-labelled) followed by fissure sealing(G-?nial Flo/GC; experimental group, RI/CR). In the control group(CR), the carious fissures were only sealed. Specimens were cut perpendicular to the occlusal surface and through the area of the highest demineralisation(DIAGNOdent pen, Ka Vo). Using confocal laser-scanning microscopy, the specimens were assessed with regard to the percentage of caries infiltration, marginal adaption and internal integrity. Within the CR group, the carious lesions were not infiltrated. Both premolar(57.9% ± 23.1%) and molar lesions(35.3% ± 22.1%) of the RI/CR group were uniformly infiltrated to a substantial extent, albeit with significant differences(P = 0.034). Moreover, microleakage(n = 1) and the occurrence of voids(n = 2) were reduced in the RI/CR group compared with the CR group(5 and 17 specimens,respectively). The RI/CR approach increases the initial quality of fissure sealing and is recommended for the clinical control of occlusal caries.
文摘Sodium hypochlorite was used to treat the standard molybdenum concentrates; the oxidization conditions for sodium hypochlorite were investigated, and the electro-oxidation process was performed. The results indicate that in the suitable conditions, such as temperature around 25℃, NaCl concentration 4.0mol/L, mass ratio of ore slurry liquid to solid (mL/mS) 20, electric charge per gram Mo 0.522C, pH value of original slurry 8, anodic current density 700A·m-2 (cell potential 2.72.9V), the Mo leaching rate and the current efficiency reach 98% and 36%, respectively. In order to overcome some shortages of the electro-oxidation process, such as low current efficiency, low Mo concentration in the leaching solution, ultrasonic was adopted to intensify the leaching process. The results show that the Mo leaching rate exceeds 98%, current efficiency increases from 36% to 50% and the Mo concentration in the leaching solution reaches about 60g/L at low mL/mS of 8 and low electric charge of 0.373C.
基金Supported by the National'Natural Science Foundation of China (21036009, 21176268), the Higher-level Talent Project tor Guangdong Provincial Universities and the Fundamental.Research Funds for the Central Universities.
文摘A facile and efficient procedure has been developed systematically for the oxidative cleavage of cinna-maldehyde to benzaldehyde by sodium hypochlorite with water as the only solvent in the presence of β-cyclodextrin (abbreviated as β-CD). Different factors influencing cinnamaldehyde oxidation e.g. reaction temperature, the amount of catalyst and oxidant, have been investigated. The yield of benzaldehyde reaches 76% under the optimum conditions (333 K, 4 h, molar ratio of cinnamaldehyde to β-CD is 1:1). Furthermore, a feasible reaction mecha-nism including the formation of benzaldehyde and the two main byproducts (phenylacetaldehyde and epoxide of cinnamaldehyde) has been proposed.
文摘To improve the durability as well as to reduce the cost of anodes, the IrO2+MnO2 composite coating anodes for NaCIO production were prepared by thermal decomposition. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD) were carried out to investigate the morphologies, element distribution, and microstructure. The anodic polarization curves were employed to study the effect of sintering temperature on the Cl2 evolution reaction (CER) of the electrodes. The accelerated life tests (ALT) and electrochemical impedance spectroscopy measurement (EIS) were utilized to investigate the stability. The rules of NaCIO production were also studied by the static electrolysis experiment. The results indicate that sintering temperature has a significant influence on the CER properties as well as the ALT values of the electrodes. The electrode prepared at 400℃ has the best CER properties and the longest ALT value.
文摘Sodium hypochlorite and ozone are the principal active substances and usually employed in ballast water management systems. In the present study, the authors focus on the effect of these active substances to the maaix polymer of coating. In order to obtain such information, the authors investigated the penetration of active substances to the polymer from cross section of specimens introduced by SAICAS (surface and interracial cutting analysis system), followed by FT-IR-ATR (Fourier transform infrared and attenuated total reflectance) spectroscopy analysis from Z direction of cross section. The corrosion test of coating panels by these active substances (control as artificial seawater) has been conducted for 120 days. The results show that the depth profile of each active substance is around few dozens of micrometers from coating surface. The criteria of corrosion test cannot be determined by these results due to lacking in actual corrosion data immersed for 15 years under active substances. However, the authors evaluated the effect on ballast tank coating systems by active substances using analytical methods of SAICAS and FT-IR-ATR spectroscopy.
基金The National Basic Research Program (973 Plan)of China (2012CB724201)
文摘According to the chemical and phase composition of the nickel-copper-iron matte containing precious metals and the progress in enrichment of precious metals from the nickel-copper-iron matte containing precious metals at home and abroad, this paper put forward the process route of enrichment of precious metals and selectively leaching of base metals from the nickel-copper-iron matte by sulfuric acid and sodium hypochlorite. The effects of particle size, leaching temperature, leaching time, amount of sulfuric acid and sodium hypochlorite on the leaching rate of nickel, cobalt, copper and iron are mainly discussed. The results show that raw material particle size has significantly effects on the leaching rate of base metals, high leaching rate of base metals and enrichment of precious metals are obtained with the suitable particle size. Through the experiments, the reasonable experiment parameters and conditions were determined as fellows: particle size of-200 to +250 mesh, leaching temperature 95℃ , leaching time 5 h, sulfuric acid concentration 30%, adding amount of sodium hypochlorite 3 times of matte weight. Under these experiment parameters and conditions, the leaching rate of nickel, cobalt, copper and iron were 97.39%, 96.24%, 98.30% and 99.01%, respectively. The content of nickel, cobalt, copper, iron in the leaching residues was 8.15%, 0.23%, 1.40% and 0.24%, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching residues was 247 g/t, 521 g/t, 112 g/t, 494 g/t and 24 g/t, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching solution was <0.0005 g/L, 0.0023 g/L, 0.0007 g/L, <0.0005 g/L and 0.00017 g/L, respectively. This process has advantages as follows: a small investment, simple technology, high enrichment efficiency.
文摘A convenient method for the chlorination in allylic position was developed by using the aqueous solution of sodium hypochlorite(2%_5% active chlorine) and an acid as chlorination reagent in a diphase system. The method has the advantage of cheap reagents, mild reaction conditions and good yields. The quantity and the feeding rate of the chlorination reagent can be controlled easily. The method is particularly suitable for the chlorination in laboratories.
基金the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAB07B04)the Natural Science Foundation of China(51278167)the Fundamental Research Funds for the Central Universities(2016B04514)
文摘We put forward a method of rapid preparation of chloride selective electrode(Ag/AgCl electrode) by dipping silver wire into sodium hypochlorite solution. The electrodes were prepared through different immersion time. The properties of the electrodes, such as Nernst response, response time and longterm stability, were tested in simulated concrete pore solutions(SCPS). Moreover, the surface morphology of the electrodes was also detected after immersion in solutions over three months. The experimental results reveal that the Ag/AgCl electrode with the fabrication time of 20 minutes(E-20) which is recommended to work as the chloride ion selective electrode has the best performance. Compared to that fabricated by the electrolytic process(E-EP), E-20 can be manufactured in mass. The method has almost the same good performance of Nernst response as E-EP, and has a better response time which is less than 25 seconds. The method also shows a better good long-term stability in SCPS containing chloride ions over three months.