A facile, safe and economical reducing agent, sodium hypophosphite(Na H2PO2·H2O), has been successfully employed for ambient temperature living radical copolymerization of styrene(St) and methyl methacrylate...A facile, safe and economical reducing agent, sodium hypophosphite(Na H2PO2·H2O), has been successfully employed for ambient temperature living radical copolymerization of styrene(St) and methyl methacrylate(MMA). Such effective reducing agent significantly improved the reactivity of low reactive St monomers during the copolymerization, where the reactivity ratios of St and MMA were determined to be 0.50 and 0.36 by Finemann-Ross method. Thus the copolymerizations proceeded fast and showed typical living/controlled features, as evidenced by pseudo first-order kinetics of polymerization, linear increase in molecular weight versus monomer conversion, and low polydispersity index values. Effects of the concentration of reducing agent and the monomer feed ratio on the copolymerization were investigated in detail. Furthermore, gel permeation chromatography and 1H-NMR analyses as well as chain extension experiments confirmed the high chain-end functionality of the resultant copolymer.展开更多
This paper presents a new method of determining Ge in AuGe alloys by potassium iodate(KIO3)potentiometric titration when Ge(Ⅱ)and Au(0)are simultaneously reduced from Ge(Ⅳ)and Au(Ⅲ)by sodium hypophosphite rather th...This paper presents a new method of determining Ge in AuGe alloys by potassium iodate(KIO3)potentiometric titration when Ge(Ⅱ)and Au(0)are simultaneously reduced from Ge(Ⅳ)and Au(Ⅲ)by sodium hypophosphite rather than by distillation separation.The influences of such conditions as the reduction acidity,the dosage of sodium hypophosphite and the reduction time on the determination of Ge were studied.Ge in AuGe alloys such as AuGe_(12),AuGeNi_(12-2),AuAgGe_(18.8-12.5),and AuAgGeNi_(43.8-6-0.2)was measured with the relative standard deviation(RSD)of 0.10%-0.31%and the recoveries of added standard Ge in sample of 99.40%-100.40%under the conditions of 0.40-0.80 mol·L^(-1)HCl,3.3 mol·L^(-1)H^(3)PO^(4),15 g sodium hypophosphite,and reduction time of40 min.The new method presented is of high accuracy in results,good stability and sensibility in end-point,and easy operation and strong selectivity of determination.展开更多
Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulf...Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.展开更多
As a functional composite material,nickel-coated aluminum powder has been widely used in conductive fillers,electromagnetic shielding materials and other fields due to its advantages of low density,high conductivity a...As a functional composite material,nickel-coated aluminum powder has been widely used in conductive fillers,electromagnetic shielding materials and other fields due to its advantages of low density,high conductivity and low cost.In this paper,nickel-plated aluminum powder was prepared by a sodium hypophosphite system.The effects of different nickel coating amounts(the percentage of nickel-plating quality to nickel-plated aluminum powder quality)on the morphology,phase,compaction resistivity and electromagnetic parameters of nickel-plated aluminum powder coating were studied.The X-Ray Diffraction(XRD)results proved the successful preparation of nickel-coated aluminum powders with different nickel coating amounts.The Scanning Electron Microscope(SEM)images clearly show the coating effect under different nickel coating amounts.By plating nickel on the surface of aluminum powder,the surface characteristics of aluminum powder are changed,so as to adjust its conductivity,resistance,stability and other properties,thus affecting its electromagnetic performance and wave absorption performance.The results show that the comprehensive absorbing performance is excellent when the nickel coating amount is 40%.The reflection loss of the sample with a thickness of 2.0mm is less than-10 dB in the frequency range of 10.17–12.38 GHz.When the frequency is 10.72 GHz,the minimum reflection loss reaches33:17 dB.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21074127)
文摘A facile, safe and economical reducing agent, sodium hypophosphite(Na H2PO2·H2O), has been successfully employed for ambient temperature living radical copolymerization of styrene(St) and methyl methacrylate(MMA). Such effective reducing agent significantly improved the reactivity of low reactive St monomers during the copolymerization, where the reactivity ratios of St and MMA were determined to be 0.50 and 0.36 by Finemann-Ross method. Thus the copolymerizations proceeded fast and showed typical living/controlled features, as evidenced by pseudo first-order kinetics of polymerization, linear increase in molecular weight versus monomer conversion, and low polydispersity index values. Effects of the concentration of reducing agent and the monomer feed ratio on the copolymerization were investigated in detail. Furthermore, gel permeation chromatography and 1H-NMR analyses as well as chain extension experiments confirmed the high chain-end functionality of the resultant copolymer.
基金the National High Technology Research and Development Program of China (Nos.2012AA063203 and 2012AA063207)。
文摘This paper presents a new method of determining Ge in AuGe alloys by potassium iodate(KIO3)potentiometric titration when Ge(Ⅱ)and Au(0)are simultaneously reduced from Ge(Ⅳ)and Au(Ⅲ)by sodium hypophosphite rather than by distillation separation.The influences of such conditions as the reduction acidity,the dosage of sodium hypophosphite and the reduction time on the determination of Ge were studied.Ge in AuGe alloys such as AuGe_(12),AuGeNi_(12-2),AuAgGe_(18.8-12.5),and AuAgGeNi_(43.8-6-0.2)was measured with the relative standard deviation(RSD)of 0.10%-0.31%and the recoveries of added standard Ge in sample of 99.40%-100.40%under the conditions of 0.40-0.80 mol·L^(-1)HCl,3.3 mol·L^(-1)H^(3)PO^(4),15 g sodium hypophosphite,and reduction time of40 min.The new method presented is of high accuracy in results,good stability and sensibility in end-point,and easy operation and strong selectivity of determination.
基金supported by Universiti Sains Malaysia under the Research University Grant (RU. Grant No.1001/PKIMIA/811006)
文摘Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.
基金support from the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government(Program No.23JC036)Scientific and Technological Plan Project of the Xi’an Science and Technology Bureau(Program No.23KGDW0031-2022).
文摘As a functional composite material,nickel-coated aluminum powder has been widely used in conductive fillers,electromagnetic shielding materials and other fields due to its advantages of low density,high conductivity and low cost.In this paper,nickel-plated aluminum powder was prepared by a sodium hypophosphite system.The effects of different nickel coating amounts(the percentage of nickel-plating quality to nickel-plated aluminum powder quality)on the morphology,phase,compaction resistivity and electromagnetic parameters of nickel-plated aluminum powder coating were studied.The X-Ray Diffraction(XRD)results proved the successful preparation of nickel-coated aluminum powders with different nickel coating amounts.The Scanning Electron Microscope(SEM)images clearly show the coating effect under different nickel coating amounts.By plating nickel on the surface of aluminum powder,the surface characteristics of aluminum powder are changed,so as to adjust its conductivity,resistance,stability and other properties,thus affecting its electromagnetic performance and wave absorption performance.The results show that the comprehensive absorbing performance is excellent when the nickel coating amount is 40%.The reflection loss of the sample with a thickness of 2.0mm is less than-10 dB in the frequency range of 10.17–12.38 GHz.When the frequency is 10.72 GHz,the minimum reflection loss reaches33:17 dB.