期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability 被引量:3
1
作者 J. Bohm S. Scherzer +4 位作者 S. Shabala E. Krol E. Neher T.D. Mueller R. Hedrich 《Molecular Plant》 SCIE CAS CSCD 2016年第3期428-436,共9页
The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe su... The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na^+- and K^+-permeable mutants function as ion channels rather than K^+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na^+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap. 展开更多
关键词 sodium channel HKT1 Dionaea muscipula action potential GLANDS sodium uptake
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部