期刊文献+
共找到990篇文章
< 1 2 50 >
每页显示 20 50 100
A Reduced Search Soft-Output Detection Algorithm and Its Application to Turbo-Equalization
1
作者 樊祥宁 窦怀宇 毕光国 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期8-12,共5页
To decrease the complexity of MAP algorithm, reduced state or reduced search techniques can be applied. In this paper we propose a reduced search soft output detection algorithm fully based on the principle of M a... To decrease the complexity of MAP algorithm, reduced state or reduced search techniques can be applied. In this paper we propose a reduced search soft output detection algorithm fully based on the principle of M algorithm for turbo equalization, which is a suboptimum version of the Lee algorithm. This algorithm is called soft output M algorithm (denoted as SO M algorithm), which applies the M strategy to both the forward recursion and the extended forward recursion of the Lee algorithm. Computer simulation results show that, by properly selecting and adjusting the breadth parameter and depth parameter during the iteration of turbo equalization, this algorithm can obtain good performance and complexity trade off. 展开更多
关键词 MAP algorithm Lee algorithm soft output M algorithm turbo equalization
下载PDF
A Novel Sequential Soft Output Viterbi Algorithm
2
作者 钱学诚 赵春明 程时昕 《Journal of Southeast University(English Edition)》 EI CAS 1999年第2期20-23,共4页
In order to fully utilize the soft decision ability of the outer decoder in a concatenated system, reliability information (called soft output) from the inner decoder or equalizer is required. In this paper, based on... In order to fully utilize the soft decision ability of the outer decoder in a concatenated system, reliability information (called soft output) from the inner decoder or equalizer is required. In this paper, based on the analysis of typical implementations of soft output VA, a novel algorithm is proposed by utilizing the property of Viterbi algorithm. Compared with the typical implementations, less processing expense is required by the new algorithm for weighting the hard decisions of VA. Meanwhile, simulation results show that, deterioration in performance of this algorithm is usually small for decoding of convolutional code and negligible for equalization. 展开更多
关键词 EQUALIZATION DECODING soft output Viterbi algorithm
下载PDF
Soft Tissue Deformation Model Based on Marquardt Algorithm and Enrichment Function 被引量:2
3
作者 Xiaorui Zhang Xuefeng Yu +1 位作者 Wei Sun Aiguo Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期1131-1147,共17页
In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marqu... In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marquardt algorithm and enrichment function.The model is based on the element-free Galerkin method,in which Kelvin viscoelastic model and adjustment function are integrated.Marquardt algorithm is applied to fit the relation between force and displacement caused by surface deformation,and the enrichment function is applied to deal with the discontinuity in the meshless method.To verify the validity of the model,the Sensable Phantom Omni force tactile interactive device is used to simulate the deformations of stomach and heart.Experimental results show that the proposed model improves the real-time performance and accuracy of soft tissue deformation simulation,which provides a new perspective for the application of the meshless method in virtual surgery. 展开更多
关键词 Virtual surgery meshless model Marquardt algorithm enrichment function soft tissue simulation
下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
4
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
下载PDF
A fuzzy immune algorithm and its application in solvent tower soft sensor modeling
5
作者 孟科 董朝阳 +2 位作者 高晓丹 王海明 李晓 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第2期197-204,共8页
An improved immune algorithm is proposed in this paper. The problems, such as convergence speed and optimization precision, existing in the basic immune algorithm are well addressed. Besides, a fuzzy adaptive method i... An improved immune algorithm is proposed in this paper. The problems, such as convergence speed and optimization precision, existing in the basic immune algorithm are well addressed. Besides, a fuzzy adaptive method is presented by using the fuzzy system to realize the adaptive selection of two key parameters (possibility of crossover and mutation). By comparing and analyzing the results of several benchmark functions, the performance of fuzzy immune algorithm (FIA) is approved. Not only the difficulty of parameters selection is relieved, but also the precision and stability are improved. At last, the FIA is ap- plied to optimization of the structure and parameters in radial basis function neural network (RBFNN) based on an orthogonal sequential method. And the availability of algorithm is proved by applying RBFNN in modeling in soft sensor of solvent tower. 展开更多
关键词 immune algorithm fuzzy system radial basis function neural network (RBFNN) soft sensor
下载PDF
An Improved Soft Subspace Clustering Algorithm for Brain MR Image Segmentation
6
作者 Lei Ling Lijun Huang +4 位作者 Jie Wang Li Zhang Yue Wu Yizhang Jiang Kaijian Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2353-2379,共27页
In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dime... In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine. 展开更多
关键词 soft subspace clustering image segmentation genetic algorithm generalized noise brain MR images
下载PDF
Soft-output stack algorithm with lattice-reduction for MIMO detection
7
作者 Yuan Yang Hailin Zhang Junfeng Hue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期197-203,共7页
A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on t... A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on the lattice-reduced equivalent channel to obtain the tree structure. With the aid of the boundary control, the stack algorithm searches a small part of the whole search tree to generate a handful of candidate lists in the reduced lattice. The proposed soft-output algorithm achieves near-optimal perfor- mance in a coded MIMO system and the associated computational complexity is substantially lower than that of previously proposed methods. 展开更多
关键词 multiple-input multiple-output (MIMO) soft-output de- tection lattice-reduction stack algorithm.
下载PDF
光照不均匀条件下无人机航拍低照度图像增强方法
8
作者 黄静 欧余韬 《现代电子技术》 北大核心 2025年第1期55-59,共5页
增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过... 增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过小波分解得到图像的高频参数和低频参数,分别通过双边滤波算法、软阈值方法和直方图对图像的低频参数和高频参数进行增强,采用小波重构对增强后的图像高频参数和低频参数进行重构,得到增强后的无人机航拍图像。通过实验验证,该方法能够实现一种效果较好的图像增强,在原始图像基础上,通过文中方法增强原始亮度8.14%、对比度提高了37.90%以及清晰度增加了31.01%,使得图像的整体质量得到了显著提升,为后续的图像分析、处理提供了更加准确、丰富的信息。 展开更多
关键词 无人机航拍 低照度图像增强 高斯滤波 小波分解与重构 双边滤波算法 软阈值方法
下载PDF
Improved ant colony optimization for multi-depot heterogeneous vehicle routing problem with soft time windows 被引量:10
9
作者 汤雅连 蔡延光 杨期江 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期94-99,共6页
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ... Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful. 展开更多
关键词 vehicle routing problem soft time window improved ant colony optimization customer service priority genetic algorithm
下载PDF
快速特征金字塔和Soft-Cascade在折角塞门图像故障检测中的应用 被引量:1
10
作者 孙国栋 林凯 +2 位作者 高媛 张杨 赵大兴 《机械科学与技术》 CSCD 北大核心 2019年第6期947-952,共6页
为了提升列车折角塞门的故障检测效率,提出了一种基于快速特征金字塔和Soft-Cascade的故障图像检测算法。首先,构建快速特征金字塔模型来提取图像多尺度聚合通道特征;其次,利用向量化后的多尺度聚合通道特征来训练Soft-Cascade故障分类... 为了提升列车折角塞门的故障检测效率,提出了一种基于快速特征金字塔和Soft-Cascade的故障图像检测算法。首先,构建快速特征金字塔模型来提取图像多尺度聚合通道特征;其次,利用向量化后的多尺度聚合通道特征来训练Soft-Cascade故障分类器;最后,利用训练好的分类器来判断待检折角塞门是否含有故障。实验结果表明:该算法的故障检测正确率为97.33%,离线检测速度高达43fps(每张图像仅需23ms),检测效率高于其他算法。该算法训练时间短,检测速度快,硬件要求低,能满足列车折角塞门的故障检测要求。 展开更多
关键词 机器视觉 折角塞门 快速特征金字塔 soft-Cascade算法
下载PDF
基于SSA-ENN神经网络的软岩隧道围岩变形预测模型
11
作者 王伊立 丁景花 马力骏 《广州建筑》 2025年第1期19-22,共4页
为研究软岩隧道围岩变形预测方法,本文通过构建麻雀搜索算法优化Elman(SSA-ENN)预测模型,以天桥山隧道为工程依托,选取软岩隧道围岩变形的拱顶沉降及水平收敛监测数据等参数作为训练和测试样本,将实测结果与SSA-ENN软岩隧道围岩变形预... 为研究软岩隧道围岩变形预测方法,本文通过构建麻雀搜索算法优化Elman(SSA-ENN)预测模型,以天桥山隧道为工程依托,选取软岩隧道围岩变形的拱顶沉降及水平收敛监测数据等参数作为训练和测试样本,将实测结果与SSA-ENN软岩隧道围岩变形预测模型的预测值进行对比,最后以DK110+605断面为例,对SSA-ENN模型进行工程应用。为了验证SSA-ENN模型的有效性,对Elman神经网络模型、SSA-ENN模型进行预测,对比结果表明,SSA-ENN模型预测精度最高,决定系数R2值为0.9965、RMSE值为7.52、MAE值为0.24,具有较高预测精度,满足指导施工的要求。 展开更多
关键词 软岩隧道 围岩变形 麻雀搜索算法 优化模型 预测模型
下载PDF
Which is the Best PID Variant for Pneumatic Soft Robots?An Experimental Study 被引量:7
12
作者 Ameer Hamza Khan Zili Shao +2 位作者 Shuai Li Qixin Wang Nan Guan 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期451-460,共10页
This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and in... This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and industry during recent years because of their inherent safety in human interaction.However,due to structural flexibility and compliance,mathematical models for these soft robots are nonlinear with an infinite degree of freedom(DOF).Therefore,accurate position(or orientation)control and optimization of their dynamic response remains a challenging task.Most existing soft robots currently employed in industrial and rehabilitation applications use model-free control algorithms such as PID.However,to the best of our knowledge,there has been no systematic study on the comparative performance of model-free control algorithms and their ability to optimize dynamic response,i.e.,reduce overshoot and settling time.In this paper,we present comparative performance of several variants of model-free PID-controllers based on extensive experimental results.Additionally,most of the existing work on modelfree control in pneumatic soft-robotic literature use manually tuned parameters,which is a time-consuming,labor-intensive task.We present a heuristic-based coordinate descent algorithm to tune the controller parameter automatically.We presented results for both manual tuning and automatic tuning using the Ziegler-Nichols method and proposed algorithm,respectively.We then used experimental results to statistically demonstrate that the presented automatic tuning algorithm results in high accuracy.The experiment results show that for soft robots,the PID-controller essentially reduces to the PI controller.This behavior was observed in both manual and automatic tuning experiments;we also discussed a rationale for removing the derivative term. 展开更多
关键词 Automatic tuning algorithm model-free control PID soft robotics
下载PDF
Soft Electronics for Health Monitoring Assisted by Machine Learning 被引量:5
13
作者 Yancong Qiao Jinan Luo +11 位作者 Tianrui Cui Haidong Liu Hao Tang Yingfen Zeng Chang Liu Yuanfang Li Jinming Jian Jingzhi Wu He Tian Yi Yang Tian-Ling Ren Jianhua Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期83-168,共86页
Due to the development of the novel materials,the past two decades have witnessed the rapid advances of soft electronics.The soft electronics have huge potential in the physical sign monitoring and health care.One of ... Due to the development of the novel materials,the past two decades have witnessed the rapid advances of soft electronics.The soft electronics have huge potential in the physical sign monitoring and health care.One of the important advantages of soft electronics is forming good interface with skin,which can increase the user scale and improve the signal quality.Therefore,it is easy to build the specific dataset,which is important to improve the performance of machine learning algorithm.At the same time,with the assistance of machine learning algorithm,the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis.The soft electronics and machining learning algorithms complement each other very well.It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future.Therefore,in this review,we will give a careful introduction about the new soft material,physiological signal detected by soft devices,and the soft devices assisted by machine learning algorithm.Some soft materials will be discussed such as two-dimensional material,carbon nanotube,nanowire,nanomesh,and hydrogel.Then,soft sensors will be discussed according to the physiological signal types(pulse,respiration,human motion,intraocular pressure,phonation,etc.).After that,the soft electronics assisted by various algorithms will be reviewed,including some classical algorithms and powerful neural network algorithms.Especially,the soft device assisted by neural network will be introduced carefully.Finally,the outlook,challenge,and conclusion of soft system powered by machine learning algorithm will be discussed. 展开更多
关键词 soft electronics Machine learning algorithm Physiological signal monitoring soft materials
下载PDF
Soft Computing Based Procurement Planning of Time-variable Demand in Manufacturing Systems 被引量:1
14
作者 Kai Leung Yung Wai Hung Ip Ding-Wei Wang 《International Journal of Automation and computing》 EI 2007年第1期80-87,共8页
Procurement planning with discrete time varying demand is an important problem in Enterprise Resource Planning (ERP). It can be described using the non-analytic mathematical programming model proposed in this paper.... Procurement planning with discrete time varying demand is an important problem in Enterprise Resource Planning (ERP). It can be described using the non-analytic mathematical programming model proposed in this paper. To solve the model we propose to use a fuzzy decision embedded genetic algorithm. The algorithm adopts an order strategy selection to simplify the original real optimization problem into binary ones. Then, a fuzzy decision quantification method is used to quantify experience from planning experts. Thus, decision rules can easily be embedded in the computation of genetic operations. This approach is applied to purchase planning problem in a practical machine tool works, where satisfactory results have been achieved. 展开更多
关键词 Purchase planning Enterprise Resource Planning (ERP) soft computing genetic algorithm fuzzy decision inventory control.
下载PDF
An improved estimation of distribution algorithm for multi-compartment electric vehicle routing problem 被引量:5
15
作者 SHEN Yindong PENG Liwen LI Jingpeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期365-379,共15页
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl... The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles. 展开更多
关键词 multi-compartment vehicle routing problem electric vehicle routing problem(EVRP) soft time window multiple charging type estimation of distribution algorithm(EDA) Lévy flight
下载PDF
A neurofuzzy system based on rough set theory and genetic algorithm 被引量:1
16
作者 罗健旭 邵惠鹤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期278-282,共5页
This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the inpu... This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the input dimension increases, the fuzzy rule base increases exponentially. This leads to a huge infrastructure network which results in slow convergence. To solve this problem, rough set theory is used to obtain the reductive rules, which are used as fuzzy rules of the fuzzy system. The number of rules decrease, and each rule does not need all the conditional attribute values. This results in a reduced, or not fully connected, neural network. The structure of the neural network is relatively small and thus the weights to be trained decrease. The genetic algorithm is used to search the optimal discretization of the continuous attributes. The NFRSGA approach has been applied in the practical application of building a soft sensor model for estimating the freezing point of the light diesel fuel in a Fluid Catalytic Cracking Unit (FCCU), and satisfying results are obtained. 展开更多
关键词 soft computing neurofuzzy system rough set genetic algorithm
下载PDF
ON THE EQUIVALENCE OF PDA ALGORITHM AND SIC-MMSE ALGORITHM 被引量:3
17
作者 Li Xiaofei Mei Zhonghui 《Journal of Electronics(China)》 2008年第2期274-276,共3页
In this letter,by employing Gaussian distribution to approximate the probability density function(pdf) of the extrinsic information at the output of the multiuser detector as a function of the pdf of the input extrins... In this letter,by employing Gaussian distribution to approximate the probability density function(pdf) of the extrinsic information at the output of the multiuser detector as a function of the pdf of the input extrinsic messages,it is concluded that the Probabilistic Data Association(PDA) algorithm is equivalent to the Soft Interference Cancellation plus Minimum Mean Square Error algo-rithm(SIC-MMSE) . 展开更多
关键词 Probabilistic Data Association (PDA) algorithm soft Interference Cancellation plus Minimum Mean Square Error (SIC-MMSE) algorithm probability density function (pdf)
下载PDF
Multi-source coordinated stochastic restoration for SOP in distribution networks with a two-stage algorithm 被引量:1
18
作者 Xianxu Huo Pan Zhang +3 位作者 Tao Zhang Shiting Sun Zhanyi Li Lei Dong 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期141-153,共13页
After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s ... After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s resilience. In this study, a multi-source coordinated load restoration strategy was investigated for a distribution network with soft open points(SOPs). Here, the flexible regulation ability of the SOPs is fully utilized to improve the load restoration level while mitigating voltage deviations. Owing to the uncertainty, a scenario-based stochastic optimization approach was employed,and the load restoration problem was formulated as a mixed-integer nonlinear programming model. A computationally efficient solution algorithm was developed for the model using convex relaxation and linearization methods. The algorithm is organized into a two-stage structure, in which the energy storage system is dispatched in the first stage by solving a relaxed convex problem. In the second stage, an integer programming problem is calculated to acquire the outputs of both SOPs and power resources. A numerical test was conducted on both IEEE 33-bus and IEEE 123-bus systems to validate the effectiveness of the proposed strategy. 展开更多
关键词 Load restoration soft open points Distribution network Stochastic optimization Two-stage algorithm
下载PDF
PROJECTED GRADIENT DESCENT BASED ON SOFT THRESHOLDING IN MATRIX COMPLETION 被引量:1
19
作者 Zhao Yujuan Zheng Baoyu Chen Shouning 《Journal of Electronics(China)》 2013年第6期517-524,共8页
Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermin... Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution. 展开更多
关键词 Matrix Completion (MC) Compressed Sensing (CS) Iterative thresholding algorithm Projected Gradient Descent based on soft Thresholding (STPGD)
下载PDF
SOFT COMPUTING APPROACH FOR NOISY IMAGE RESTORATION
20
作者 刘伟 王磊 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第2期28-32,共5页
A genetic learning algorithm based fuzzy neural network was proposed for noisy image restoration, which can adaptively find and extract the fuzzy rules contained in noise. It can efficiently remove image noise and pre... A genetic learning algorithm based fuzzy neural network was proposed for noisy image restoration, which can adaptively find and extract the fuzzy rules contained in noise. It can efficiently remove image noise and preserve the detail image information as much as possible. The experimental results show that the proposed approach is able to performa far better than conventional noise removing techniques. 展开更多
关键词 soft COMPUTING GENETIC algorithms fuzzy NEURAL network image RESTORATION Document code:A
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部