期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Applications of Soft Computing Methods in Backbreak Assessment in Surface Mines: A Comprehensive Review
1
作者 Mojtaba Yari Manoj Khandelwal +3 位作者 Payam Abbasi Evangelos I.Koutras Danial Jahed Armaghani Panagiotis G.Asteris 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2207-2238,共32页
Geo-engineering problems are known for their complexity and high uncertainty levels,requiring precise defini-tions,past experiences,logical reasoning,mathematical analysis,and practical insight to address them effecti... Geo-engineering problems are known for their complexity and high uncertainty levels,requiring precise defini-tions,past experiences,logical reasoning,mathematical analysis,and practical insight to address them effectively.Soft Computing(SC)methods have gained popularity in engineering disciplines such as mining and civil engineering due to computer hardware and machine learning advancements.Unlike traditional hard computing approaches,SC models use soft values and fuzzy sets to navigate uncertain environments.This study focuses on the application of SC methods to predict backbreak,a common issue in blasting operations within mining and civil projects.Backbreak,which refers to the unintended fracturing of rock beyond the desired blast perimeter,can significantly impact project timelines and costs.This study aims to explore how SC methods can be effectively employed to anticipate and mitigate the undesirable consequences of blasting operations,specifically focusing on backbreak prediction.The research explores the complexities of backbreak prediction and highlights the potential benefits of utilizing SC methods to address this challenging issue in geo-engineering projects. 展开更多
关键词 Backbreak BLASTING soft computing methods prediction theory-guided machine learning
下载PDF
State-of-the-art review of soft computing applications in underground excavations 被引量:50
2
作者 Wengang Zhang Runhong Zhang +4 位作者 Chongzhi Wu Anthony Teck Chee Goh Suzanne Lacasse Zhongqiang Liu Hanlong Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1095-1106,共12页
Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,comp... Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available. 展开更多
关键词 soft computing method(SCM) Underground excavations Wall deformation Predictive capacity
下载PDF
Development of mathematically motivated hybrid soft computing models for improved predictions of ultimate bearing capacity of shallow foundations
3
作者 Abiodun Ismail Lawal Sangki Kwon 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期747-759,共13页
Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but ... Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but it is costly and time-consuming which has led to the development of various models based on the simplified assumptions.The outcomes of the models are usually validated with the experimental results,but a large gap usually exists between them.Therefore,a model that can give a close prediction of the experimental results is imperative.This study proposes a grasshopper optimization algorithm(GOA)and salp swarm algorithm(SSA)to optimize artificial neural networks(ANNs)using the existing UBC experimental database.The performances of the proposed models are evaluated using various statistical indices.The obtained results are compared with the existing models.The proposed models outperformed the existing models.The proposed hybrid GOA-ANN and SSA-ANN models are then transformed into mathematical forms that can be incorporated into geotechnical/foundation engineering design codes for accurate UBC measurements. 展开更多
关键词 Ultimate bearing capacity(UBC) GEOTECHNICS Grasshopper optimization algorithm(GOA) Salp swarm algorithm(SSA) soft computing(SC)method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部