Geo-engineering problems are known for their complexity and high uncertainty levels,requiring precise defini-tions,past experiences,logical reasoning,mathematical analysis,and practical insight to address them effecti...Geo-engineering problems are known for their complexity and high uncertainty levels,requiring precise defini-tions,past experiences,logical reasoning,mathematical analysis,and practical insight to address them effectively.Soft Computing(SC)methods have gained popularity in engineering disciplines such as mining and civil engineering due to computer hardware and machine learning advancements.Unlike traditional hard computing approaches,SC models use soft values and fuzzy sets to navigate uncertain environments.This study focuses on the application of SC methods to predict backbreak,a common issue in blasting operations within mining and civil projects.Backbreak,which refers to the unintended fracturing of rock beyond the desired blast perimeter,can significantly impact project timelines and costs.This study aims to explore how SC methods can be effectively employed to anticipate and mitigate the undesirable consequences of blasting operations,specifically focusing on backbreak prediction.The research explores the complexities of backbreak prediction and highlights the potential benefits of utilizing SC methods to address this challenging issue in geo-engineering projects.展开更多
Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,comp...Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available.展开更多
Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but ...Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but it is costly and time-consuming which has led to the development of various models based on the simplified assumptions.The outcomes of the models are usually validated with the experimental results,but a large gap usually exists between them.Therefore,a model that can give a close prediction of the experimental results is imperative.This study proposes a grasshopper optimization algorithm(GOA)and salp swarm algorithm(SSA)to optimize artificial neural networks(ANNs)using the existing UBC experimental database.The performances of the proposed models are evaluated using various statistical indices.The obtained results are compared with the existing models.The proposed models outperformed the existing models.The proposed hybrid GOA-ANN and SSA-ANN models are then transformed into mathematical forms that can be incorporated into geotechnical/foundation engineering design codes for accurate UBC measurements.展开更多
文摘Geo-engineering problems are known for their complexity and high uncertainty levels,requiring precise defini-tions,past experiences,logical reasoning,mathematical analysis,and practical insight to address them effectively.Soft Computing(SC)methods have gained popularity in engineering disciplines such as mining and civil engineering due to computer hardware and machine learning advancements.Unlike traditional hard computing approaches,SC models use soft values and fuzzy sets to navigate uncertain environments.This study focuses on the application of SC methods to predict backbreak,a common issue in blasting operations within mining and civil projects.Backbreak,which refers to the unintended fracturing of rock beyond the desired blast perimeter,can significantly impact project timelines and costs.This study aims to explore how SC methods can be effectively employed to anticipate and mitigate the undesirable consequences of blasting operations,specifically focusing on backbreak prediction.The research explores the complexities of backbreak prediction and highlights the potential benefits of utilizing SC methods to address this challenging issue in geo-engineering projects.
基金supported by High-end Foreign Expert Introduction program (No.G20190022002)Chongqing Construction Science and Technology Plan Project (2019-0045)
文摘Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available.
基金supported by Korea Research Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Grant No.2019H1D3A1A01102993)the Inha University Research Grant(2022).
文摘Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but it is costly and time-consuming which has led to the development of various models based on the simplified assumptions.The outcomes of the models are usually validated with the experimental results,but a large gap usually exists between them.Therefore,a model that can give a close prediction of the experimental results is imperative.This study proposes a grasshopper optimization algorithm(GOA)and salp swarm algorithm(SSA)to optimize artificial neural networks(ANNs)using the existing UBC experimental database.The performances of the proposed models are evaluated using various statistical indices.The obtained results are compared with the existing models.The proposed models outperformed the existing models.The proposed hybrid GOA-ANN and SSA-ANN models are then transformed into mathematical forms that can be incorporated into geotechnical/foundation engineering design codes for accurate UBC measurements.