Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills.In this paper,an improved multiple-vacuum preloading method was de...Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills.In this paper,an improved multiple-vacuum preloading method was developed to consolidate newly dredger fills that are hydraulically placed in seawater for land reclamation in Lingang Industrial Zone of Tianjin City,China.With this multiplevacuum preloading method,the newly deposited dredger fills could be treated effectively by adopting a novel moisture separator and a rapid improvement technique without sand cushion.A series of model tests was conducted in the laboratory for comparing the results from the multiple-vacuum preloading method and the traditional one.Ten piezometers and settlement plates were installed to measure the variations in excess pore water pressures and moisture content,and vane shear strength was measured at different positions.The testing results indicate that water dischargeetime curves obtained by the traditional vacuum preloading method can be divided into three phases:rapid growth phase,slow growth phase,and steady phase.According to the process of fluid flow concentrated along tiny ripples and building of larger channels inside soils during the whole vacuum loading process,the fluctuations of pore water pressure during each loading step are divided into three phases:steady phase,rapid dissipation phase,and slow dissipation phase.An optimal loading pattern which could have a best treatment effect was proposed for calculating the water discharge and pore water pressure of soil using the improved multiple-vacuum preloading method.For the newly deposited dredger fills at Lingang Industrial Zone of Tianjin City,the best loading step was 20 kPa and the loading of 40-50 k Pa produced the highest drainage consolidation.The measured moisture content and vane shear strength were discussed in terms of the effect of reinforcement,both of which indicate that the multiple-vacuum preloading method has a better treatment effect not only in decreasing the moisture content and increasing the bearing capacity,but also in increasing the process uniformity at different depths of foundation.展开更多
为了解吹填土长时期稳定蠕变变形的本质机理,对天津滨海吹填土原状土与重塑土开展分级加载固结不排水三轴蠕变试验,在围压75 k Pa、偏应力10 k Pa下开展多组蠕变平行试验,并选取8个时间节点取样进行扫描电镜与比表面积试验,主要研究小...为了解吹填土长时期稳定蠕变变形的本质机理,对天津滨海吹填土原状土与重塑土开展分级加载固结不排水三轴蠕变试验,在围压75 k Pa、偏应力10 k Pa下开展多组蠕变平行试验,并选取8个时间节点取样进行扫描电镜与比表面积试验,主要研究小偏应力作用下稳定蠕变过程中微结构变化规律。结果表明,天津吹填土富含黏粒与黏土矿物、大孔隙比与高压缩性的物理性质、片架结构和片堆结构的结构类型,这些特征使其具有明显的蠕变特性。蠕变过程中,随着时间的增长,颗粒体积变大,数量呈减小趋势,比表面积呈减小趋势;孔隙变化遵循大孔隙优先改变原理,孔径与体积减小;颗粒与孔隙的外形趋于"圆滑",复杂度减小,圆形度增加,整体向无序状态发展。吹填土蠕变现象总结为其内部结构不断改变自我调整再造以适应外力变化的过程。最后,依据受力大小和结构破损程度将蠕变过程分为2个阶段,结构压密增长阶段与结构减损破坏阶段。展开更多
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.51378344 and 51578371)Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.14JCYBJC21700)Beijing-Tianjin-Hebei Special Projects of Cooperation(Grant No.16JCJDJC40000) for their financial supports
文摘Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills.In this paper,an improved multiple-vacuum preloading method was developed to consolidate newly dredger fills that are hydraulically placed in seawater for land reclamation in Lingang Industrial Zone of Tianjin City,China.With this multiplevacuum preloading method,the newly deposited dredger fills could be treated effectively by adopting a novel moisture separator and a rapid improvement technique without sand cushion.A series of model tests was conducted in the laboratory for comparing the results from the multiple-vacuum preloading method and the traditional one.Ten piezometers and settlement plates were installed to measure the variations in excess pore water pressures and moisture content,and vane shear strength was measured at different positions.The testing results indicate that water dischargeetime curves obtained by the traditional vacuum preloading method can be divided into three phases:rapid growth phase,slow growth phase,and steady phase.According to the process of fluid flow concentrated along tiny ripples and building of larger channels inside soils during the whole vacuum loading process,the fluctuations of pore water pressure during each loading step are divided into three phases:steady phase,rapid dissipation phase,and slow dissipation phase.An optimal loading pattern which could have a best treatment effect was proposed for calculating the water discharge and pore water pressure of soil using the improved multiple-vacuum preloading method.For the newly deposited dredger fills at Lingang Industrial Zone of Tianjin City,the best loading step was 20 kPa and the loading of 40-50 k Pa produced the highest drainage consolidation.The measured moisture content and vane shear strength were discussed in terms of the effect of reinforcement,both of which indicate that the multiple-vacuum preloading method has a better treatment effect not only in decreasing the moisture content and increasing the bearing capacity,but also in increasing the process uniformity at different depths of foundation.
文摘为了解吹填土长时期稳定蠕变变形的本质机理,对天津滨海吹填土原状土与重塑土开展分级加载固结不排水三轴蠕变试验,在围压75 k Pa、偏应力10 k Pa下开展多组蠕变平行试验,并选取8个时间节点取样进行扫描电镜与比表面积试验,主要研究小偏应力作用下稳定蠕变过程中微结构变化规律。结果表明,天津吹填土富含黏粒与黏土矿物、大孔隙比与高压缩性的物理性质、片架结构和片堆结构的结构类型,这些特征使其具有明显的蠕变特性。蠕变过程中,随着时间的增长,颗粒体积变大,数量呈减小趋势,比表面积呈减小趋势;孔隙变化遵循大孔隙优先改变原理,孔径与体积减小;颗粒与孔隙的外形趋于"圆滑",复杂度减小,圆形度增加,整体向无序状态发展。吹填土蠕变现象总结为其内部结构不断改变自我调整再造以适应外力变化的过程。最后,依据受力大小和结构破损程度将蠕变过程分为2个阶段,结构压密增长阶段与结构减损破坏阶段。