期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Plasmonic nanostructure characterized by deep-neuralnetwork-assisted spectroscopy[Invited] 被引量:2
1
作者 董奇奥 王文琦 +5 位作者 曹欣怡 肖依博 郭笑涵 马敬轩 汪联辉 高丽 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第1期17-24,共8页
The lateral geometry and material property of plasmonic nanostructures are critical parameters for tailoring their optical resonance for sensing applications.While lateral geometry can be easily observed by a scanning... The lateral geometry and material property of plasmonic nanostructures are critical parameters for tailoring their optical resonance for sensing applications.While lateral geometry can be easily observed by a scanning electron microscope or an atomic force microscope,characterizing materials properties of plasmonic devices is not straightforward and requires delicate examination of material composition,cross-sectional thickness,and refractive index.In this study,a deep neural network is adopted to characterize these parameters of unknown plasmonic nanostructures through simple transmission spectra.The network architecture is established based on simulated data to achieve accurate identification of both geometric and material parameters.We then demonstrate that the network training by a mixture of simulated and experimental data can result in correct material property recognition.Our work may indicate a simple and intelligent characterization approach to plasmonic nanostructures by spectroscopic techniques. 展开更多
关键词 PLASMONICS soft nanoimprint lithography deep neural network nanostructure characterization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部