期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
Soft Robotics:Morphology and Morphology-inspired Motion Strategy 被引量:5
1
作者 Fan Xu Hesheng Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第9期1500-1522,共23页
Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation ... Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation as well as with environmental adaption.Accordingly,scientists have shifted their focus on soft robotics to apply this type of robots more effectively in unstructured environments.For decades,they have been committed to exploring sub-fields of soft robotics(e.g.,cutting-edge techniques in design and fabrication,accurate modeling,as well as advanced control algorithms).Although scientists have made many different efforts,they share the common goal of enhancing applicability.The presented paper aims to brief the progress of soft robotic research for readers interested in this field,and clarify how an appropriate control algorithm can be produced for soft robots with specific morphologies.This paper,instead of enumerating existing modeling or control methods of a certain soft robot prototype,interprets for the relationship between morphology and morphology-dependent motion strategy,attempts to delve into the common issues in a particular class of soft robots,and elucidates a generic solution to enhance their performance. 展开更多
关键词 soft continuum manipulator soft gripper soft mobile robot soft robot control method soft robot modeling method soft robotics
下载PDF
Direct 4D printing of functionally graded hydrogel networks for biodegradable,untethered,and multimorphic soft robots
2
作者 Soo Young Cho Dong Hae Ho +1 位作者 Sae Byeok Jo Jeong Ho Cho 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期407-416,共10页
Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest benef... Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics. 展开更多
关键词 intelligent and sustainable additive manufacturing multi-material four-dimensional printing untethered soft robot multi-stimuli-responsive soft robot biodegradable soft robotics
下载PDF
MXenes for Bioinspired Soft Actuators:Advancements in Angle-Independent Structural Colors and Beyond
3
作者 Siavash Iravani Rajender S.Varma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期18-34,共17页
Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural mo... Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics. 展开更多
关键词 MXenes MXene-based composites Bioinspired soft robotics Angle-independent structural color
下载PDF
Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color 被引量:2
4
作者 Pan Xue Yuanhao Chen +7 位作者 Yiyi Xu Cristian Valenzuela Xuan Zhang Hari Krishna Bisoyi Xiao Yang Ling Wang Xinhua Xu Quan Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期1-13,共13页
In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it... In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines. 展开更多
关键词 Bioinspired soft actuator Angle-independent structural color MXene liquid crystals soft robotics
下载PDF
Ultralong Stretchable Soft Actuator(US2A):Design,Modeling and Application
5
作者 Wenbiao Wang Yunfei Zhu +1 位作者 Shibo Cai Guanjun Bao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期280-291,共12页
Actuator plays a significant role in soft robotics.This paper proposed an ultralong stretchable soft actuator(US2A)with a variable and sizeable maximum elongation.The US2A is composed of a silicone rubber tube and a b... Actuator plays a significant role in soft robotics.This paper proposed an ultralong stretchable soft actuator(US2A)with a variable and sizeable maximum elongation.The US2A is composed of a silicone rubber tube and a bellows woven sleeve.The maximal extension can be conveniently regulated by just adjusting the wrinkles’initial angle of the bellows woven sleeve.The kinematics of US2A could be obtained by geometrically analyzing the structure of the bellows woven sleeve when the silicone rubber tube is inflated.Based on the principle of virtual work,the actuating models have been established:the pressure-elongation model and the pressure-force model.These models reflect the influence of the silicone tube’s shell thickness and material properties on the pneumatic muscle’s performance,which facilitates the optimal design of US2A for various working conditions.The experimental results showed that the maximum elongation of the US2A prototype is 257%,and the effective elongation could be variably regulated in the range of 0 and 257%.The proposed models were also verified by pressure-elongation and pressure-force experiments,with an average error of 5%and 2.5%,respectively.Finally,based on the US2A,we designed a pneumatic rehabilitation glove,soft arm robot,and rigid-soft coupling continuous robot,which further verified the feasibility of US2A as a soft driving component. 展开更多
关键词 soft robotics soft actuator Pneumatic artificial muscle MODELING
下载PDF
A Review of Smart Materials for the Boost of Soft Actuators,Soft Sensors,and Robotics Applications 被引量:4
6
作者 Yufei Hao Shixin Zhang +3 位作者 Bin Fang Fuchun Sun Huaping Liu Haiyuan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期12-27,共16页
With the advance of smart material science,robotics is evolving from rigid robots to soft robots.Compared to rigid robots,soft robots can safely interact with the environment,easily navigate in unstructured fields,and... With the advance of smart material science,robotics is evolving from rigid robots to soft robots.Compared to rigid robots,soft robots can safely interact with the environment,easily navigate in unstructured fields,and be minimized to operate in narrow spaces,owning to the new actuation and sensing technologies developed by the smart materials.In the review,different actuation and sensing technologies based on different smart materials are analyzed and summarized.According to the driving or feedback signals,actuators are categorized into electrically responsive actuators,thermally responsive actuators,magnetically responsive actuators,and photoresponsive actuators;sensors are categorized into resistive sensors,capacitive sensors,magnetic sensors,and optical waveguide sensors.After introducing the principle and several robotic prototypes of some typical materials in each category of the actuators and sensors.The advantages and disadvantages of the actuators and sensors are compared based on the categories,and their potential applications in robotics are also presented. 展开更多
关键词 Smart material soft robot ACTUATOR SENSOR
下载PDF
Modeling and Adaptive Neural Network Control for a Soft Robotic Arm With Prescribed Motion Constraints 被引量:2
7
作者 Yan Yang Jiangtao Han +2 位作者 Zhijie Liu Zhijia Zhao Keum-Shik Hong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期501-511,共11页
This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.... This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.The unmodeled dynamics of the system are considered,and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network.The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory.The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm. 展开更多
关键词 Adaptive control cosserat theory prescribed motion constraints soft robotic arm
下载PDF
Which is the Best PID Variant for Pneumatic Soft Robots?An Experimental Study 被引量:7
8
作者 Ameer Hamza Khan Zili Shao +2 位作者 Shuai Li Qixin Wang Nan Guan 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期451-460,共10页
This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and in... This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and industry during recent years because of their inherent safety in human interaction.However,due to structural flexibility and compliance,mathematical models for these soft robots are nonlinear with an infinite degree of freedom(DOF).Therefore,accurate position(or orientation)control and optimization of their dynamic response remains a challenging task.Most existing soft robots currently employed in industrial and rehabilitation applications use model-free control algorithms such as PID.However,to the best of our knowledge,there has been no systematic study on the comparative performance of model-free control algorithms and their ability to optimize dynamic response,i.e.,reduce overshoot and settling time.In this paper,we present comparative performance of several variants of model-free PID-controllers based on extensive experimental results.Additionally,most of the existing work on modelfree control in pneumatic soft-robotic literature use manually tuned parameters,which is a time-consuming,labor-intensive task.We present a heuristic-based coordinate descent algorithm to tune the controller parameter automatically.We presented results for both manual tuning and automatic tuning using the Ziegler-Nichols method and proposed algorithm,respectively.We then used experimental results to statistically demonstrate that the presented automatic tuning algorithm results in high accuracy.The experiment results show that for soft robots,the PID-controller essentially reduces to the PI controller.This behavior was observed in both manual and automatic tuning experiments;we also discussed a rationale for removing the derivative term. 展开更多
关键词 Automatic tuning algorithm model-free control PID soft robotics
下载PDF
Bioinspired soft actuators with highly ordered skeletal muscle structures 被引量:2
9
作者 Yingjie Wang Chunbao Liu +1 位作者 Luquan Ren Lei Ren 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第1期174-188,共15页
Mammals such as humans develop skeletal muscles composed of muscle fibers and connective tissue,which have mechanical properties that enable power output with three-dimensional motion when activated.Artificial muscle-... Mammals such as humans develop skeletal muscles composed of muscle fibers and connective tissue,which have mechanical properties that enable power output with three-dimensional motion when activated.Artificial muscle-like actuators developed to date,such as the McKibben artificial muscle,often focus sole contractile elements and have rarely addressed the contribution of flexible connective tissue that forms an integral part of the structure and morphology of biological muscle.Herein,we present a class of pneumatic muscle-like actuators,termed highly mimetic skeletal muscle(HimiSK)actuator,that consist of parallelly arranged contractile units in a flexible matrix inspired by ultrasonic measurements on skeletal muscle.The contractile units act as a muscle fiber to produce active shortening force,and the flexible matrix functions as connective tissue to generate passive deformation.The application of positive pressure to the contractile units can produce a linear contraction and force.In this actuator,we assign different flexible materials as contractile units and a flexible matrix,thus forming five mold actuators.These actuators feature three-dimensional motion on activation and present both intrinsic force-velocity and force-length characteristics that closely resebmle those of a biological muscle.High output and tetanic force produced by harder contractile units improve the maximum output force by up to about 41.3%and the tetanic force by up to about 168%.Moreover,high displacement and velocity can be generated by a softer flexible matrix,with the improvement of maximum displacement up to about 33.3%and velocity up to about 73%.The results demonstrate that contractile units play a crucial role in force generation,while the flexible matrix has a significant impact on force transmission and deformation;the final force,velocity,displacement,and three-dimensional motion results from the interplay of contractile units,fluid and flexible matrix.Our approach introduces a model of the presented HimiSK actuators to better understand the mechanical behaviors,force generation,and transmission in bioinspired soft actuators,and highlights the importance of using flexible connective tissue to form a structure and configuration similar to that of skeletal muscle,which has potential usefulness in the design of effective artificial muscle. 展开更多
关键词 BIOINSPIRED soft robotics ACTUATOR Skeletal muscle
下载PDF
Computational dynamics of soft machines 被引量:8
10
作者 Haiyan Hu Qiang Tian Cheng Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期516-528,共13页
Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and act... Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies. 展开更多
关键词 Computational dynamics Multibody system dynamics Absolute nodal coordinate formulation Contact and impact soft machine soft robot Deployable space structure
下载PDF
Dynamic Finite Element Modeling and Simulation of Soft Robots 被引量:3
11
作者 Liang Ding Lizhou Niu +4 位作者 Yang Su Huaiguang Yang Guangjun Liu Haibo Gao Zongquan Deng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期45-55,共11页
Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are i... Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are interested in their designing,manufacturing,modeling,and control.However,the dynamic simulation of soft robots is difficult owing to their infinite degrees of freedom and nonlinear characteristics that are associated with soft materials and flexible geometric structures.In this study,a novel multi-flexible body dynamic modeling and simulation technique is introduced for soft robots.Various actuators for soft robots are modeled in a virtual environment,including soft cable-driven,spring actuation,and pneumatic driving.A pneumatic driving simulation was demonstrated by the bending modules with different materials.A cable-driven soft robot arm prototype and a cylindrical soft module actuated by shape memory alley springs inspired by an octopus were manufactured and used to validate the simulation model,and the experimental results demonstrated adequate accuracy.The proposed technique can be widely applied for the modeling and dynamic simulation of other soft robots,including hybrid actuated robots and rigid-flexible coupling robots.This study also provides a fundamental framework for simulating soft mobile robots and soft manipulators in contact with the environment. 展开更多
关键词 soft robot Finite-element modeling Dynamic simulation
下载PDF
Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
12
作者 王琪 雍颖琼 白智明 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期703-709,共7页
Nowadays,soft robots have become a research hot spot due to high degree of freedom,adaptability to the environment and safer interaction with humans.The carbon nanotube(CNT)/polydimethylsiloxane(PDMS)electrothermal co... Nowadays,soft robots have become a research hot spot due to high degree of freedom,adaptability to the environment and safer interaction with humans.The carbon nanotube(CNT)/polydimethylsiloxane(PDMS)electrothermal composites have attracted wide attention in the field of flexible actuations due to large deformation at low voltages.Here,the preparation process of CNT/PDMS composites was designed and optimized,and electrothermal actuators(ETAs)were fabricated by cutting the CNT/PDMS composite films into a“U”shape and coating conductive adhesive.The deformation performance of the ETAs with different thicknesses at different voltages was studied.At a low voltage of about 7 V,the ETA has a deformation rate of up to 93%.Finally,two kinds of electrothermal soft robots(ETSRs)with four-legged and three-legged structures were fabricated,and their inchworm-like motion characteristics were studied.The ETSR2 has the best motion performance due to the moderate thickness and three-legged electrode structure. 展开更多
关键词 carbon nanotube(CNT) polydimethylsiloxane(PDMS) electrothermal actuator soft robot
下载PDF
Intelligent structured nanocomposite adhesive for bioelectronics and soft robots 被引量:1
13
作者 Yeon Soo Lee Min-Seok Kim +1 位作者 Da Wan Kim Changhyun Pang 《Nano Research》 SCIE EI CSCD 2024年第2期534-549,共16页
The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features.This review focuses ... The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features.This review focuses on intelligent bio-inspired strategies for developing soft bioelectronics and robotics that can accommodate nanocomposite adhesives and integrate them into biological surfaces.The underlying principles of the material and structural design of nanocomposite adhesives were investigated for practical applications with excellent functionalities,such as soft skin-attachable health care sensors,highly stretchable adhesive electrodes,switchable adhesion,and untethered soft robotics.In addition,we have discussed recent progress in the development of effective fabrication methods for micro/nanostructures for integration into devices,presenting the current challenges and prospects. 展开更多
关键词 biomimetics bio-adhesive switchable adhesion BIOELECTRONICS NANOCOMPOSITE soft robotics
原文传递
Biomimetic soft robotic wrist with 3-DOF motion and stiffness tunability based on ring-reinforced pneumatic actuators and a particle jamming joint
14
作者 HU TeTe LU XinJiang +2 位作者 YI Jian WANG YuHui XU Du 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第3期774-790,共17页
The human wrist, a complex articulation of skeletal muscles and two-carpal rows, substantially contributes to improvements in maneuverability by agilely performing three-degree-of-freedom(3-DOF) orienting tasks and re... The human wrist, a complex articulation of skeletal muscles and two-carpal rows, substantially contributes to improvements in maneuverability by agilely performing three-degree-of-freedom(3-DOF) orienting tasks and regulating stiffness according to variations in interaction forces. However, few soft robotic wrists simultaneously demonstrate dexterous 3-DOF motion and variable stiffness;in addition, they do not fully consider a soft-rigid hybrid structure of integrated muscles and two carpal rows.In this study, we developed a soft-rigid hybrid structure to design a biomimetic soft robotic wrist(BSRW) that is capable of rotating in the x and y directions, twisting around the z-axis, and possessing stiffness-tunable capacity. To actuate the BSRW, a lightweight soft-ring-reinforced bellows-type pneumatic actuator(SRBPA) with large axial, linear deformation(η_(lcmax)=70.6%,η_(lemax)=54.3%) and small radial expansion(η_(demax)=3.7%) is designed to mimic the motion of skeletal muscles. To represent the function of two-carpal rows, a compact particle-jamming joint(PJJ) that combines particles with a membrane-covered ballsocket mechanism is developed to achieve various 3-DOF motions and high axial load-carrying capacity(>60 N). By varying the jamming pressure, the stiffness of the PJJ can be adjusted. Finally, a centrally positioned PJJ and six independently actuated SRBPAs, which are in an inclined and antagonistic arrangement, are sandwiched between two rigid plates to form a flexible,stable, and compact BSRW. Such a structure enables the BSRW to have a dexterous 3-DOF motion, high load-carrying ability,and stiffness tunability. Experimental analysis verify 3-DOF motion of BSRW, producing force of 29.6 N and 36 N and torque of2.2 Nm in corresponding rotations. Moreover, the range of rotational angle and stiffness-tuning properties of BSRW are studied by applying jamming pressure to the PJJ. Finally, a system combining a BSRW and a soft enclosing gripper is proposed to demonstrate outstanding manipulation capability in potential applications. 展开更多
关键词 pneumatic soft actuators particle jamming robotic wrist soft robotics stiffness-tunable
原文传递
Deformation and Locomotion of Untethered Small-Scale Magnetic Soft Robotic Turtle with Programmable Magnetization
15
作者 Lin Xu Liu Yang +2 位作者 Tao Li Xingbang Zhang Jianning Ding 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期754-763,共10页
Inspired by the way sea turtles rely on the Earth’s magnetic field for navigation and locomotion,a novel magnetic soft robotic turtle with programmable magnetization has been developed and investigated to achieve bio... Inspired by the way sea turtles rely on the Earth’s magnetic field for navigation and locomotion,a novel magnetic soft robotic turtle with programmable magnetization has been developed and investigated to achieve biomimetic locomotion patterns such as straight-line swimming and turning swimming.The soft robotic turtle(12.50 mm in length and 0.24 g in weight)is integrated with an Ecoflex-based torso and four magnetically programmed acrylic elastomer VHB-based limbs containing samarium-iron–nitrogen particles,and was able to carry a load more than twice its own weight.Similar to the limb locomotion characteristics of sea turtles,the magnetic torque causes the four limbs to mimic sinusoidal bending deformation under the influence of an external magnetic field,so that the turtle swims continuously forward.Significantly,when the bending deformation magnitudes of its left and right limbs differ,the soft robotic turtle switches from straight-line to turning swimming at 6.334 rad/s.Furthermore,the tracking swimming activities of the soft robotic turtle along specific planned paths,such as square-shaped,S-shaped,and double U-shaped maze,is anticipated to be utilized for special detection and targeted drug delivery,among other applications owing to its superior remote directional control ability. 展开更多
关键词 Magnetic soft robotic turtle Programmable magnetization Untethered soft robotics Bending deformation
原文传递
A Bio-inspired Mutual-hook Strategy for the Soft Finger to Improve Load-bearing Capacity and Grasping Stability
16
作者 Jie Huang Lingjie Gai +1 位作者 Xiaofeng Zong Yunquan Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1290-1304,共15页
Soft grippers have great potential applications in daily life,since they can compliantly grasp soft and delicate objects.However,the highly elastic fingers of most soft grippers are prone to separate from each other w... Soft grippers have great potential applications in daily life,since they can compliantly grasp soft and delicate objects.However,the highly elastic fingers of most soft grippers are prone to separate from each other while grasping objects due to their low stiffness,thus reducing the grasping stability and load-bearing capacity.To tackle this problem,inspired from the venus flytrap plant,this work proposes a mutual-hook mechanism to restrain the separation and improve the grasping performance of soft fingers.The novel soft gripper design consists of three modules,a soft finger-cot,two Soft Hook Actuators(SHAs)and two sliding mechanisms.Here,the soft finger-cot covers on the soft finger,increasing the contact area with the target object,two SHAs are fixed to the left and right sides of the finger-cot,and the sliding mechanisms are designed to make SHAs stretch flexibly.Experiments demonstrate that the proposed design can restrain the separation of soft fingers substantially,and the soft fingers with the finger-cots can grasp objects three times heavier than the soft fingers without the proposed design.The proposed design can provide invaluable insights for soft fingers to restrain the separation while grasping,thus improving the grasping stability and the load-bearing capacity. 展开更多
关键词 soft robotics soft bionic finger-cot soft hook actuator Grasping stability Load-bearing capacity
原文传递
Modular Soft Robotic Crawlers Based on Fluidic Prestressed Composite Actuators
17
作者 Zefeng Xu Linkai Hu +2 位作者 Longya Xiao Hongjie Jiang Yitong Zhou 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期694-706,共13页
Soft robotic crawlers have limited payload capacity and crawling speed.This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite(FPC)actuators.The FPC actuator... Soft robotic crawlers have limited payload capacity and crawling speed.This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite(FPC)actuators.The FPC actuator is precurved and a pneumatic source is used to flatten it,requiring no energy cost to maintain the equilibrium curved shape.Pressurizing and depressurizing the actuators generate alternating stretching and bending motions of the actuators,achieving the crawling motion of the robotic crawler.Multi-modal locomotion(crawling,turning,and pipe climbing)is achieved by modular reconfiguration and gait design.An analytical kinematic model is proposed to characterize the quasi-static curvature and step size of a single-module crawler.Multiple configurations of robotic crawlers are fabricated to demonstrate the crawling ability of the proposed design.A set of systematic experiments are set up and conducted to understand how crawler responses vary as a function of FPC prestrains,input pressures,and actuation frequencies.As per the experiments,the maximum carrying load ratio(carrying load divided by robot weight)is found to be 22.32,and the highest crawling velocity is 3.02 body length(BL)per second(392 mm/s).Multi-modal capabilities are demonstrated by reconfiguring three soft crawlers,including a matrix crawler robot crawling in amphibious environments,and an inching crawler turning at an angular velocity of 2/s,as well as earthworm-like crawling robots climbing a 20 inclination slope and pipe. 展开更多
关键词 soft robot soft crawler Fluidic prestressed composite Kinematic model Enhanced loading Multi-modal capability
原文传递
A Bionic Starfish Adsorption Crawling Soft Robot
18
作者 Xiangang Huang Chenghao Zhang +3 位作者 Wenqi Feng Xiangye Zhang Deyuan Zhang Yanqiang Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期149-165,共17页
A variety of soft wall-climbing robots have been developed that can move in certain patterns.Most of these soft robots can only move on conventional surfaces and lack adaptability to complex surfaces.Improving the ada... A variety of soft wall-climbing robots have been developed that can move in certain patterns.Most of these soft robots can only move on conventional surfaces and lack adaptability to complex surfaces.Improving the adaptability of soft robots on complex surfaces is still a challenging problem.To this end,we study the layered structure of the starfish tube foot and the valve flap structure in the water vascular system,and use an ultrasonic stress detector to study the stiffness distribution of the arm structure.Inspired by the motion of the starfish,we present a bionic soft wall-climbing robot,which is driven by two groups of pneumatic feet and achieves body bending through active adaptation layers.We design the structure of the foot to flex to provide driving force,and there are suction cups at the end of the foot to provide suction.The soft foot has a simple structure design,adapts to a variety of surfaces,and does not damage the surface of the substrate.Variable stiffness layers achieve stiffness changes by the principle of line blocking.The Central Pattern Generator theory is introduced to coordinately control the multiple feet of the robot.After experiments,we verify the adaptability of the soft robot to curved surfaces.The research may provide a reference for the design and development of crawling soft robots on complex surfaces. 展开更多
关键词 STARFISH Tube foot Biomimetic robot soft robot Climbing robot
原文传递
Bionic soft robotic gripper with feedback control for adaptive grasping and capturing applications
19
作者 Tingke WU Zhuyong LIU +3 位作者 Ziqi MA Boyang WANG Daolin MA Hexi YU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第1期129-148,共20页
Robots are playing an increasingly important role in engineering applications.Soft robots have promising applications in several fields due to their inherent advantages of compliance,low density,and soft interactions.... Robots are playing an increasingly important role in engineering applications.Soft robots have promising applications in several fields due to their inherent advantages of compliance,low density,and soft interactions.A soft gripper based on bio-inspiration is proposed in this study.We analyze the cushioning and energy absorption mechanism of human fingertips in detail and provide insights for designing a soft gripper with a variable stiffness structure.We investigate the grasping modes through a large deformation modeling approach,which is verified through experiments.The characteristics of the three grasping modes are quantified through testing and can provide guidance for robotics manipulation.First,the adaptability of the soft gripper is verified by grasping multi-scale and extremely soft objects.Second,a cushioning model of the soft gripper is proposed,and the effectiveness of cushioning is verified by grasping extremely sharp objects and living organisms.Notably,we validate the advantages of the variable stiffness of the soft gripper,and the results show that the soft robot can robustly complete assemblies with a gap of only 0.1 mm.Owing to the unstructured nature of the engineering environment,the soft gripper can be applied in complex environments based on the abovementioned experimental analysis.Finally,we design the soft robotics system with feedback capture based on the inspiration of human catching behavior.The feasibility of engineering applications is initially verified through fast capture experiments on moving objects.The design concept of this robot can provide new insights for bionic machinery. 展开更多
关键词 soft bionic gripper variable stiffness structure large deformation modeling feedback control soft robotic system
原文传递
A Novel Cable-Driven Soft Robot for Surgery
20
作者 李茹 陈方 +3 位作者 俞文伟 IGARASH Tatsuo 舒雄鹏 谢叻 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第1期60-72,共13页
Robot-assisted laparoscopic radical prostatectomy(RARP)is widely used to treat prostate cancer.The rigid instruments primarily used in RARP cannot overcome the problem of blind areas in surgery and lead to more trauma... Robot-assisted laparoscopic radical prostatectomy(RARP)is widely used to treat prostate cancer.The rigid instruments primarily used in RARP cannot overcome the problem of blind areas in surgery and lead to more trauma such as more incision for the passage of the instrument and additional tissue damage caused by rigid instruments.Soft robots are relatively fexible and theoretically have infinite degrees of freedom which can overcome the problem of the rigid instrument.A soft robot system for single-port transvesical robot-assisted radical prostatectomy(STvRARP)is developed in this study.The soft manipulator with 10 mm in diameter and a maximum bending angle of 270°has good fexibility and dexterity.The design and mechanical structure of the soft robot are described.The kinematics of the soft manipulator is established and the inverse kinematics is compensated based on the characteristics of the designed soft manipulator.The master-slave control system of soft robot for surgery is built and the feasibility of the designed soft robot is verified. 展开更多
关键词 soft robot kinematics model robot-assisted surgery
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部