期刊文献+
共找到668篇文章
< 1 2 34 >
每页显示 20 50 100
Study on Asymmetric Deformation Law and Surrounding Rock Control Technology of High Stress Soft Rock Crossing Roadway
1
作者 Linhao Zhang 《World Journal of Engineering and Technology》 2023年第2期353-369,共17页
In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang C... In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang Coal Mine as the engineering background, the causes of asymmetric deformation and failure of soft rock crossing roadway in deep mines were summarized and analyzed by means of field investigation, theoretical analysis and numerical simulation, and the asymmetric high-efficiency support technology with large row spacing was studied. The results show that the lithology of roadway strata is the main cause of asymmetric deformation and failure of roadway. The shape change of roadway is not the main influencing factor of asymmetric deformation of roadway, but for the control of roadway surrounding rock, the straight wall semi-circular arch roadway is better than the rectangular roadway. The field industrial test shows that after adopting the new support design scheme, the displacement of the roof and floor of the roadway is reduced by 86.39% compared with the original support design scheme, and the displacement of the two sides of the roadway is reduced by 86.05% compared with the original support design scheme, which can ensure the normal and safe production of the roadway during the service period, and provide reference for the support design of other similar geological conditions. 展开更多
关键词 Deep high Stress soft rock Penetration Asymmetric Deformation Support FLAC3D
下载PDF
Time-dependent squeezing deformation mechanism of tunnels in layered soft-rock stratum under high geo-stress 被引量:5
2
作者 CHEN Zi-quan HE Chuan +1 位作者 WANG Jun MA Chun-chi 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1371-1390,共20页
Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of ... Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of deep-buried softrock tunnel by means of a combination of field observations and a numerical method.First,a new classification criterion for large deformations based on the power exponent variation law between the deformation and the strength-stress ratio is proposed.Then,the initial damage tensor reflecting the bedding plane(joint)distribution and an equivalent damage evolution equation derived from the viscoplastic strain are introduced based on the geometric research method,i.e.,a new rheological damage model(RDL model)of layered soft rock is established consisting of elastic,viscous,viscoelastic,viscoplastic and plastic elements.A field test was conducted on the Maoxian tunnel in Sichuan province,southwestern China,which is in broken phyllite(layered soft rock)under high geo-stress.The tunnel has experienced large deformation due to serious squeezing pressure,thus we adopted double primary support method to overcome the supporting structure failure problems.The rheological parameters of phyllite in the Maoxian tunnel were recognized by using SA-PSO optimization,and the RDL model does a good job in describing the time-dependent deformation behavior of a layered soft-rock tunnel under high geo-stress.Thus,the RDL model was used to investigate the supporting effect and bearing mechanism of the double primary support method.Compared with the single primary support method,the surrounding rock pressure,secondary lining force,surrounding rock deformation,and the depth of the damage to the rock mass was reduced by 40%-60%after the double primary support method was used. 展开更多
关键词 Deformation mechanism Layered soft rock tunnel high geostress Large squeezing deformation Rheological damage model
下载PDF
Failure mechanism of bolting support and high-strength bolt-grouting technology for deep and soft surrounding rock with high stress 被引量:16
3
作者 李术才 王洪涛 +5 位作者 王琦 江贝 王富奇 郭念波 刘文江 任尧喜 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期440-448,共9页
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i... In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines. 展开更多
关键词 high stress soft rock bolting support interface dilation failure mechanism high strength bolt-grouting technology
下载PDF
Instability mechanism and control technology of soft rock roadway affected by mining and high confined water 被引量:12
4
作者 Li Guichen Jiang Zuohan +3 位作者 Lv Chuangxin Huang Chao Chen Gui Li Mingyuan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期573-580,共8页
Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the com... Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock. 展开更多
关键词 high confined water soft rock roadway Instability mechanism Control technology
下载PDF
Principle and practice of coupling support of double yielding shell of soft rock roadway under high stress 被引量:10
5
作者 Li Chong Wang Zhongliang Liu Tao 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期513-518,共6页
In order to ensure the safety and stability of the soft rock roadway under high stress, based on the char- acteristics of the surrounding rock deformation and failure, this paper presented the support technology“coup... In order to ensure the safety and stability of the soft rock roadway under high stress, based on the char- acteristics of the surrounding rock deformation and failure, this paper presented the support technology“coupling support of double yielding shell”, then gave the design method of inner and outer shells and analyzed the principle and requirements of the support technology by taking the -850 meast belt mad-way of Qujiang coal mine as the background. The field application results show that the support technol- ogy can control the soft rock roadway deformation better under high stress. The displacement between roadway sides was 851 mm, the displacement of the roof was 430 mm, and the displacement of the floor was 510 mm. 展开更多
关键词 high stress soft rock roadway Yielding shell Reticulated shell Short bolting
下载PDF
Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine 被引量:11
6
作者 Yang Renshu Li Yongliang +3 位作者 Guo Dongming Yao Lan Yang Tongmao Li Taotao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期245-252,共8页
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg... Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs. 展开更多
关键词 high stress and soft rock Water immersion Failure mechanism Large and small structures Rework control
下载PDF
The principle of stability control of surrounding rock-bearing structures in high stress soft rock roadways 被引量:2
7
作者 WANG Wei-jun ZHU Yong-jian LI Shu-qing ZHANG Peng 《Journal of Coal Science & Engineering(China)》 2009年第1期24-27,共4页
Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was ... Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements. 展开更多
关键词 high stress engineering soft rock mass inner and outer structures high resistance and yielding support timely support
下载PDF
An experimental study of a yielding support for roadways constructed in deep broken soft rock under high stress 被引量:7
8
作者 Lu Yinlong Wang Lianguo Zhang Bei 《Mining Science and Technology》 EI CAS 2011年第6期839-844,共6页
A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' w... A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application. 展开更多
关键词 high stress Broken soft rock Roadways Yielding support Yielding anchor bolt
下载PDF
Construction Technology of Large-deformation High Geostress Soft Rock Tunnel 被引量:1
9
作者 Xuguang Zheng Heng Zhang Xuesong Su 《Journal of World Architecture》 2021年第1期30-32,共3页
In the process of tunnel construction,if large-deformation occurs in high geostress soft rock,it will likely cause geological disasters.This situation will not only seriously affect the smooth progress of tunnel const... In the process of tunnel construction,if large-deformation occurs in high geostress soft rock,it will likely cause geological disasters.This situation will not only seriously affect the smooth progress of tunnel construction,but also cause serious safety threat to the construction personnel.Therefore,with the continuous growth in the number and scale of tunnel construction in recent years,the construction technology for high geostress soft rock with large-deformation has begun to receive more and more attention from the society.Based on this,this paper takes an actual project as an example to analyze the specific application of the technology in order to improve the construction effect and avoid the damage caused by the large-deformation of the high geostress soft rock. 展开更多
关键词 Tunnel construction high geostress soft rock LARGE-DEFORMATION Construction technology
下载PDF
Engineering study on roadway support in high-stress composite soft rock
10
作者 贾明魁 程东泉 《Journal of Coal Science & Engineering(China)》 2003年第1期42-46,共5页
The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rhe... The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rheological deformation. Furthermore, on the basis of analyzing physico chemical component of surrounding rock and the situation of the damaged roadway, the method of adopting strong bolting and shotcreting mesh for the primary support, bolting and grouting for the secondary support is put forward in light of the on the spot investigation of stress tension, mechanical parameter and engineering geology. The application reveals the method facilitates the continuation of west main roadway and the restoration of shaft station and chambers. Consequently, better techno economic results have been achieved. 展开更多
关键词 high stress composite soft rock ROADWAY strong force bolting and shotcreting mesh bolting and grouting
下载PDF
Bolt-grouting combined support technology in deep soft rock roadway 被引量:12
11
作者 Chen Yanlong Meng Qingbin +2 位作者 Xu Guang Wu Haoshuai Zhang Guimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期777-785,共9页
Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined... Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed. 展开更多
关键词 Deep soft rock roadway Bolt-grouting support Numerical simulation Similar material simulation high stress
下载PDF
Optimization of construction scheme and supporting technology for HJS soft rock tunnel 被引量:8
12
作者 Wang Shuren Li Chunliu +1 位作者 Liu Zhaowei Fang Junbo 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期847-852,共6页
For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformati... For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits. 展开更多
关键词 soft rock tunnel high stress Deformation mechanism Support parameters Optimization
下载PDF
Study on the Deformation Mechanism of a Soft Rock Tunnel
13
作者 Jianhui Yang Kai Shen +2 位作者 Shoudong Pan Shuren Wang Zhengsheng Zou 《Fluid Dynamics & Materials Processing》 EI 2022年第2期243-255,共13页
The large deformation of soft rock tunnel is one of the key problems to be overcome in the tunnel construction stage.In the present study,the deformation mechanism of a representative tunnel and some related counterme... The large deformation of soft rock tunnel is one of the key problems to be overcome in the tunnel construction stage.In the present study,the deformation mechanism of a representative tunnel and some related countermeasures are investigated using field tests and engineering geological analysis.Owing to the scarce performances of methods based on other criteria such as small pipe spacing,anchor bolt length and steel frame spacing,a new support scheme is implemented and optimized.Results show that shear failure and bedding sliding are produced under high horizontal stress conditions.The low strength of the surrounding rock results in the uneven convergence of both sides of the tunnel.With the aforementioned new support scheme,however,most of such problems can be mitigated leading to good stability properties and ensuing economic advantages. 展开更多
关键词 soft rock tunnel high stress deformation mechanism supporting countermeasure
下载PDF
极高地应力软岩隧道非对称变形机理及支护优化研究 被引量:2
14
作者 陈志敏 赵吉万 +3 位作者 龚军 陈宇飞 李增印 孙胜旗 《防灾减灾工程学报》 CSCD 北大核心 2024年第1期109-119,共11页
针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力... 针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力学特性室内试验研究及地应力实测情况,探究了非对称大变形形成机理并提出针对性的支护结果优化方案。结果表明:高地应力层状软岩隧道围岩不对称变形是在岩层倾角α、最大水平主应力与隧道轴线夹角β和岩层夹角γ、围岩岩性和地下水综合作用下的大变形,围岩不对称部位由以上几种因素共同决定;当主应力σ1与隧道轴线既不垂直也不平行时,会产生挤压性偏压构造水平地应力,使隧道横断面侧向受力不对称,发生偏压性非对称大变形;通过改变锚杆的布设方式、提高超前注浆小导管的长度和刚度、喷射临时封闭、在防水板与喷射砼间增加高密度橡塑海绵板缓冲层等措施,可以有效的减少变形量,防止围岩因开挖扰动而松动和坍塌。 展开更多
关键词 极高地应力 软岩隧道 非对称变形 支护优化
下载PDF
高地应力软岩隧道长期稳定性分析 被引量:1
15
作者 邓云纲 《铁道工程学报》 EI CSCD 北大核心 2024年第4期60-67,89,共9页
研究目的:高地应力软岩具有明显的流变特性,流变过程中岩体参数随时间发生变化。本文结合梁王山隧道的设计施工方案,采用Cvisc模型对其施工过程及运营期间的围岩和支护的受力和变形情况进行分析,查明了隧道在施工阶段和长期运营阶段的... 研究目的:高地应力软岩具有明显的流变特性,流变过程中岩体参数随时间发生变化。本文结合梁王山隧道的设计施工方案,采用Cvisc模型对其施工过程及运营期间的围岩和支护的受力和变形情况进行分析,查明了隧道在施工阶段和长期运营阶段的应力、应变和变形特性以及隧道支护结构的内力与变形随时间发展规律。研究结论:(1)在软岩隧道工程施工中,施工时应对隧道初支拱脚处适当加固,控制拱脚变形;(2)不仅要保证施工期的安全,更需要关注隧道在后期运营过程中的长期稳定性;(3)需根据全寿命周期内的围岩流变稳定状态设计支护结构的刚度,从而确保隧道结构长期稳定;(4)本研究成果可为高地应力软岩隧道施工安全和长期稳定性研究提供参考。 展开更多
关键词 软岩隧道 长期稳定性 流变 高地应力 数值模拟
下载PDF
深部极松软围岩沿空巷道稳定性控制及应用
16
作者 袁安营 田鑫 +1 位作者 李唐 徐超凡 《煤炭工程》 北大核心 2024年第4期36-44,共9页
针对深部高应力作用下极松软围岩变形量大、破碎程度高、巷道难支护等问题,以丁集煤矿1232(3)沿空巷道为工程背景,采用数值模拟、现场监测和井下试验相结合的方法,对深部高应力极松软围岩沿空巷道破坏特征及阶段性控制原理和技术进行研... 针对深部高应力作用下极松软围岩变形量大、破碎程度高、巷道难支护等问题,以丁集煤矿1232(3)沿空巷道为工程背景,采用数值模拟、现场监测和井下试验相结合的方法,对深部高应力极松软围岩沿空巷道破坏特征及阶段性控制原理和技术进行研究。结果表明:随着距巷道迎头距离的不断增大,巷道两帮应力的不对称性逐渐增大,实体煤侧应力峰值为37.18 MPa大于煤柱侧35.21 MPa,1242(3)终采线50 m范围内存在应力集中,最大达33 MPa,巷道围岩塑性区发育程度为煤柱帮大于实体煤帮大于顶底板;从巷道掘进过程中所经历的复杂围岩变化过程,将全巷道划分为5种典型的围岩变化阶段来分析围岩变形破坏特征和破坏机理,揭示了在高应力作用下深部软岩沿空巷道围岩变形量大,在空间上呈现出明显的区域性和非对称性的特征;基于巷道初步设计方案和围岩变形破坏特征,及时有效的调整支护方案,对巷道进行分段式、非对称、区域化综合治理,形成深部软岩巷道围岩控制长效机制,为同类型深部软岩巷道地压治理提供了理论和技术支撑。 展开更多
关键词 深部高应力 极松软围岩 沿空巷道 围岩控制 阶段性支护
下载PDF
高地应力软岩地层敞开式TBM法隧洞围岩变形控制技术——以香炉山隧洞为例 被引量:3
17
作者 王斌 杨延栋 +3 位作者 周建军 李凤远 徐海峰 刘超尹 《隧道建设(中英文)》 CSCD 北大核心 2024年第2期341-348,共8页
为解决敞开式TBM在滇西地区高地应力软岩地层施工中遭遇围岩大变形而导致的支护破坏、设备频繁被卡、隧洞侵限等工程难题,通过分析围岩允许变形量与变形规律,提出围岩控制时空原则:有效初期支护施作时间为开挖后15 d内、空间位置为距掌... 为解决敞开式TBM在滇西地区高地应力软岩地层施工中遭遇围岩大变形而导致的支护破坏、设备频繁被卡、隧洞侵限等工程难题,通过分析围岩允许变形量与变形规律,提出围岩控制时空原则:有效初期支护施作时间为开挖后15 d内、空间位置为距掌子面30 m范围内,TBM掘进日进尺不低于2 m/d。通过不同类型的支护结构现场试验,得出控制围岩变形的有效措施为预应力长锚索主动控制变形、灌混凝土箱体H型钢拱架被动强支撑。另通过滇中引水香炉山隧洞敞开式TBM施工实践,开发出“掌子面位置刀盘扩挖预留允许变形量、围岩出护盾灌混凝土箱体拱架被动强支撑、隧洞上半圆前置式自动化喷混凝土早封闭、预应力长锚索主动控制深层围岩变形、隧洞底部自进式锚杆后补强”等围岩变形有效控制技术。 展开更多
关键词 软岩大变形 围岩变形控制 高地应力 引水隧洞 岩石隧道掘进机
下载PDF
高地应力软岩隧道初支侵限诱因及控制措施研究 被引量:1
18
作者 李文辉 李小勇 +1 位作者 邓湘 陈露 《山西建筑》 2024年第5期148-151,共4页
高地应力软弱围岩隧道施工易发生软岩大变形不良地质灾害,进一步引发掌子面失稳塌方、初支结构破坏、钢拱架弯折、初支结构侵限等不良现象,严重影响施工安全,阻碍工期。依托九绵高速白马隧道工程,结合工程特点,从围岩自身力学特性及高... 高地应力软弱围岩隧道施工易发生软岩大变形不良地质灾害,进一步引发掌子面失稳塌方、初支结构破坏、钢拱架弯折、初支结构侵限等不良现象,严重影响施工安全,阻碍工期。依托九绵高速白马隧道工程,结合工程特点,从围岩自身力学特性及高地应力软岩变形特征方面深入分析了白马隧道初支侵限机理,并针对此特点,提出了一套适用于软岩大变形初支结构侵限专项施工方案。研究结果表明,由于地下水的侵蚀,炭质千枚岩发生软化,岩体力学性质变差,自承能力降低,在高地应力持续作用下,围岩发生挤压大变形,进一步诱导初支侵限。变更支护方案后,6 m锚杆结合小导管注浆加固对围岩变形有一定控制作用,但6 m锚杆无法将松动区岩块锚固在稳定母体中,不能充分发挥锚杆悬吊能力,对围岩变形控制效果有限,无法满足现场围岩变形需求,建议采用8 m长锚杆。初支拆换过程中应实时监测围岩变化情况,明确围岩变化方向、速率、累计值等,并根据现场实时监测数据反馈施工,实时调整支护参数,确保施工质量。 展开更多
关键词 高地应力 软岩大变形 初支侵限 变形机理 拆换拱方案
下载PDF
软岩筑坝技术在某面板堆石坝的应用研究
19
作者 龚欣傲 叶澜涛 +1 位作者 孙书洪 李淼 《科学技术创新》 2024年第21期187-190,共4页
本文采用邓肯张e-b模型,使用通用岩土分析软件MIDAS GTS NX软件对大坝建立了三维模型,设计四种不同分区使用软岩的方案,分别为主体、主堆石区、次堆石区以及次堆石区510~610 m高程部分使用软岩,并对四种方案下面板堆石坝的应力与变形进... 本文采用邓肯张e-b模型,使用通用岩土分析软件MIDAS GTS NX软件对大坝建立了三维模型,设计四种不同分区使用软岩的方案,分别为主体、主堆石区、次堆石区以及次堆石区510~610 m高程部分使用软岩,并对四种方案下面板堆石坝的应力与变形进行了分析。得到以下结论:采用软岩的大坝应力与变形分布规律与传统堆石料类似,在次堆石区部分部位使用软岩可以大大降低大坝的应力与变形,软岩用于高面板坝坝体填筑是安全可行的。分析结果对工程设计优化、类似工程借鉴、保证工程安全具有一定的参考价值。 展开更多
关键词 高面板堆石坝 软岩 有限元分析 应力变形分析 邓肯张e-b模型
下载PDF
松软围岩巷道高渗透性无机材料注浆加固技术
20
作者 范军平 刘玉德 +2 位作者 仇晋忠 张靖 杨国栋 《能源与环保》 2024年第5期252-256,共5页
为了研究高渗透性无机材料在松软围岩巷道进行注浆加固技术,以新景矿15124工作面回风巷为研究对象,通过地面试验及现场试验,分析了注浆材料性能。结果表明,高渗透性无机材料以超细水泥、微硅粉、粉煤灰与减水计组成,按0.73∶0.14∶0.12... 为了研究高渗透性无机材料在松软围岩巷道进行注浆加固技术,以新景矿15124工作面回风巷为研究对象,通过地面试验及现场试验,分析了注浆材料性能。结果表明,高渗透性无机材料以超细水泥、微硅粉、粉煤灰与减水计组成,按0.73∶0.14∶0.12∶0.01的比例进行配比使用,材料初凝时间约为3 h、终凝时间约为24 h,其注浆时所形成的网络固结体,最终的抗压强度可达到35 MPa。材料颗粒主要为块状和片状,内部孔隙裂隙较少,致密性高,不易与水大面积反应。巷道内使用该材料注浆加固后,巷道深部裂隙宏观裂隙被封堵、离层填平;巷道表面顶底板累计移近量减小了71.95%,两帮累计移近量减小了74.6%。采用高渗透性无机材料加固后,巷道围岩变形效果得到了明显的控制。 展开更多
关键词 松软围岩 高渗透 无机材料 注浆加固
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部