Due to the rapid development of society,public places,especially large shopping malls,are relatively frequent places for emergencies.Such emergencies not only seriously affect public security and property,but also bri...Due to the rapid development of society,public places,especially large shopping malls,are relatively frequent places for emergencies.Such emergencies not only seriously affect public security and property,but also bring great psychological pressure to citizens.Therefore,this study is of great significance for the exploration and study of public place emergencies.The research object of this study is the public shopping mall.Based on the AnyLogic simulation platform and guided by the relevant principles of social force model,this study utilize the pedestrian storehouse in the platform as the core module to build the simulation environment,and attempts to simulate the police force restraining effect on the overall event and the perpetrators after the occur of emergent incident under different police force allocations.In order to ensure the accuracy of the experimental data,the research team conducted field survey to estimate the average flow of people and the general data of the security personnel in shopping malls,also estimated the rest rain and capture time after repeated experiments.The results indicate that increasing additional police force outside the shopping malls and pre-organizing reasonable patrol routes can obviously facilitate police officers to restrain perpetrators.Meanwhile,it is also clear that the AnyLogic platform can effectively simulate pedestrian movement and interaction behaviour in emergencies.展开更多
The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a serie...The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.展开更多
The influence of the magnetization of a soft magnetic sphere on the surrounding magnetic field is measured and characterized.The interaction force between two soft magnetic particles is directly measured using an ultr...The influence of the magnetization of a soft magnetic sphere on the surrounding magnetic field is measured and characterized.The interaction force between two soft magnetic particles is directly measured using an ultra precision load sensor in uniform and non-uniform magnetic fields. The interaction force largely follows an inverse fourth power law as a function of separation distance between particle centers. At small distances,the effect of magnetization of one particle on the magnetization of its adjacent particle causes the attractive(repulsive) force to be larger(smaller) than that predicted by the inverse fourth power law.The theoretical prediction based on a modified dipole model,that takes into account the coupling effect of the magnetization among soft magnetic particles,gives excellent agreement with the measured force in a uniform magnetic field.The interaction force under a non-uniform applied magnetic field can be reasonably predicted using the dipole-dipole interaction model when the local magnetic field is used to determine the magnetization.展开更多
In the impact tests of soft materials, we sometimes observe a thorn shape in the rising segment of the impact force waveform. However, the reason for the occurrence of the thorn shape has not been made clear. In this ...In the impact tests of soft materials, we sometimes observe a thorn shape in the rising segment of the impact force waveform. However, the reason for the occurrence of the thorn shape has not been made clear. In this study, thorn-shape waveforms of several soft materials are measured using compact drop test equipment under the condition of a flat frontal impact. A flat frontal impact is the condition where a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. Synchronized impact forces are measured using two sensors installed on both the drop hammer side and the floor side. The examined soft materials are a sponge sheet, sponge rubber sheet, gel sheet, rubber sheet, flat oil clay, low-rebound urethane foam, cork sheet, sliced ham, pork ham steak, and pork. Based on the test results, the features of the thorn-shape waveforms are discussed from a bird’s-eye view. Furthermore, the occurrence mechanism of the thorn-shape waveforms is discussed from the viewpoint of viscosity discontinuity and the double-strike phenomenon.展开更多
In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping fo...In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping force and slow response speed.To improve these characteristics,a novel pneumatic soft gripper with a jointed endoskeleton structure(E-Gripper)is developed,in which the muscle actuating function has been separated from the force bearing function.The soft action of an E-Gripper finger is performed by some air chambers surrounded by multilayer rubber embedded in the restraining fiber.The gripping force is borne and transferred by the rigid endoskeleton within the E-Gripper finger Thus,the gripping force and action response speed can be increased while the flexibility is maintained.Through experiments,the bending angle of each finger segment,response time,and gripping force of the E-Gripper have been measured,which provides a basis for designing and controlling the soft gripper The test results have shown that the maximum gripping force of the E-Gripper can be 35 N,which is three times greater than that of a fully soft gripper(FS-Gripper)of the same size.At the maximum charging pressure of 150 kPa,the response time is1.123 s faster than that of the FS-Gripper.The research results indicate that the flexibility of a pneumatic soft gripper is not only maintained in the case of the E-Gripper,but its gripping force is also obviously increased,and the response time is reduced.The E-Gripper thus shows great potential for future development and applications.展开更多
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre...Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.展开更多
The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. ...The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. The experimental results indicated that the impact force waveforms of soft materials consisted of a thorn-shaped waveform and a subsequent mountain-shaped waveform. The thorn-shaped waveform was strongly affected by the strain rate. In the present study, the occurrence mechanism of this distinctive waveform was discussed from the viewpoint of the viscosity transient phenomenon. A standard linear solid (SLS) model in which the viscosity transient phenomenon was considered was applied to the simulation. Some features of the impact force waveform of soft materials could be explained by the SLS model. Furthermore, the thorn-shape waveform could also be observed in the impact force waveforms of human skin and free-falling hollow balls.展开更多
The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rhe...The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rheological deformation. Furthermore, on the basis of analyzing physico chemical component of surrounding rock and the situation of the damaged roadway, the method of adopting strong bolting and shotcreting mesh for the primary support, bolting and grouting for the secondary support is put forward in light of the on the spot investigation of stress tension, mechanical parameter and engineering geology. The application reveals the method facilitates the continuation of west main roadway and the restoration of shaft station and chambers. Consequently, better techno economic results have been achieved.展开更多
This paper deals with the problem of force-closure analysis for soft multi-fingered grasps. The first step is the study of the relationship between the external wrench space and the manipulation force space at any con...This paper deals with the problem of force-closure analysis for soft multi-fingered grasps. The first step is the study of the relationship between the external wrench space and the manipulation force space at any contact. Constraint force set, strictly constraint force set and normal force set are defined in the contact force space, followed by an investigation of their relationships. Based on the convexity of the friction constraints for soft finger contact, the necessary and sufficient conditions for force-closure grasps are derived. Accordingly an efficient algorithm for testing force-closure is presented. Some illustrative examples are given.展开更多
Broad output force and speed ranges are highly desired for actuators to endow soft robots with high performance,thereby increasing the range of tasks they can accomplish.However,limited by their low structural stiffne...Broad output force and speed ranges are highly desired for actuators to endow soft robots with high performance,thereby increasing the range of tasks they can accomplish.However,limited by their low structural stiffness and single actuation method,most of the existed soft actuators are still difficult to achieve a broad force and speed range with a relatively compact body structure.Here,we propose a pneumatic and tendon actuation coupled soft actuator(PTCSA)with multiple actuation modes,mainly composing of a multi-joint thermoplastic polyurethanes(TPU)-made skeleton sealed in a film sleeve.The TPU skeleton with certain structural stiffness combined with soft joints allows PTCSA to output small force and respond rapidly under pneumatic actuation,as well as output high force and flexibly regulate response speed under tendon actuation,therefore achieving a broad force and speed range with a compact structure.The multiple modes constructed from the two actuation methods with different force and speed properties can cover diverse application scenarios.To demonstrate its performance,PTCSA is further used to construct a soft robotic arm(with a maximum lifting speed of 198°/s and can easily lift a load of 200 g),an inchworm-inspired wheel-footed soft robot(moves at a high speed of 2.13 cm/s when unload or pulls a load of 300 g forward),and a soft gripper(can grasp diverse objects,from 0.1 g potato chips to an 850 g roll of Sn-0.7 Cu wire,from a high-speed moving tennis ball to an upright pen).This work indicates the potential of combining multiple complementary actuation methods to improve the force and speed range of soft actuators,and may provide inspiration for related research.展开更多
文摘Due to the rapid development of society,public places,especially large shopping malls,are relatively frequent places for emergencies.Such emergencies not only seriously affect public security and property,but also bring great psychological pressure to citizens.Therefore,this study is of great significance for the exploration and study of public place emergencies.The research object of this study is the public shopping mall.Based on the AnyLogic simulation platform and guided by the relevant principles of social force model,this study utilize the pedestrian storehouse in the platform as the core module to build the simulation environment,and attempts to simulate the police force restraining effect on the overall event and the perpetrators after the occur of emergent incident under different police force allocations.In order to ensure the accuracy of the experimental data,the research team conducted field survey to estimate the average flow of people and the general data of the security personnel in shopping malls,also estimated the rest rain and capture time after repeated experiments.The results indicate that increasing additional police force outside the shopping malls and pre-organizing reasonable patrol routes can obviously facilitate police officers to restrain perpetrators.Meanwhile,it is also clear that the AnyLogic platform can effectively simulate pedestrian movement and interaction behaviour in emergencies.
基金Supported by the National Natural Science Foundation of China(No.51175373)New Century Educational Talents Plan of Chinese Education Ministry(No.NCET-10-0625)+1 种基金Key Technology and Development Program of Tianjin Municipal Science and Technology Commission(No.12ZCDZSY10600)Tianjin Key Laboratory of High Speed Cutting&Precision Machining(TUTE)(2013120024001167)
文摘The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.
基金supported by the U.S.Department of Energy under Award(DE-FE0001321).
文摘The influence of the magnetization of a soft magnetic sphere on the surrounding magnetic field is measured and characterized.The interaction force between two soft magnetic particles is directly measured using an ultra precision load sensor in uniform and non-uniform magnetic fields. The interaction force largely follows an inverse fourth power law as a function of separation distance between particle centers. At small distances,the effect of magnetization of one particle on the magnetization of its adjacent particle causes the attractive(repulsive) force to be larger(smaller) than that predicted by the inverse fourth power law.The theoretical prediction based on a modified dipole model,that takes into account the coupling effect of the magnetization among soft magnetic particles,gives excellent agreement with the measured force in a uniform magnetic field.The interaction force under a non-uniform applied magnetic field can be reasonably predicted using the dipole-dipole interaction model when the local magnetic field is used to determine the magnetization.
文摘In the impact tests of soft materials, we sometimes observe a thorn shape in the rising segment of the impact force waveform. However, the reason for the occurrence of the thorn shape has not been made clear. In this study, thorn-shape waveforms of several soft materials are measured using compact drop test equipment under the condition of a flat frontal impact. A flat frontal impact is the condition where a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. Synchronized impact forces are measured using two sensors installed on both the drop hammer side and the floor side. The examined soft materials are a sponge sheet, sponge rubber sheet, gel sheet, rubber sheet, flat oil clay, low-rebound urethane foam, cork sheet, sliced ham, pork ham steak, and pork. Based on the test results, the features of the thorn-shape waveforms are discussed from a bird’s-eye view. Furthermore, the occurrence mechanism of the thorn-shape waveforms is discussed from the viewpoint of viscosity discontinuity and the double-strike phenomenon.
基金Supported by National Natural Science Foundation of China(Grant No.51305202)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20130764)
文摘In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping force and slow response speed.To improve these characteristics,a novel pneumatic soft gripper with a jointed endoskeleton structure(E-Gripper)is developed,in which the muscle actuating function has been separated from the force bearing function.The soft action of an E-Gripper finger is performed by some air chambers surrounded by multilayer rubber embedded in the restraining fiber.The gripping force is borne and transferred by the rigid endoskeleton within the E-Gripper finger Thus,the gripping force and action response speed can be increased while the flexibility is maintained.Through experiments,the bending angle of each finger segment,response time,and gripping force of the E-Gripper have been measured,which provides a basis for designing and controlling the soft gripper The test results have shown that the maximum gripping force of the E-Gripper can be 35 N,which is three times greater than that of a fully soft gripper(FS-Gripper)of the same size.At the maximum charging pressure of 150 kPa,the response time is1.123 s faster than that of the FS-Gripper.The research results indicate that the flexibility of a pneumatic soft gripper is not only maintained in the case of the E-Gripper,but its gripping force is also obviously increased,and the response time is reduced.The E-Gripper thus shows great potential for future development and applications.
基金support by the National Natural Science Foundation of China (No.51174195)the Fundamental Research Funds for the Central Universities of China (No.2010QNA31)
文摘Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.
文摘The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. The experimental results indicated that the impact force waveforms of soft materials consisted of a thorn-shaped waveform and a subsequent mountain-shaped waveform. The thorn-shaped waveform was strongly affected by the strain rate. In the present study, the occurrence mechanism of this distinctive waveform was discussed from the viewpoint of the viscosity transient phenomenon. A standard linear solid (SLS) model in which the viscosity transient phenomenon was considered was applied to the simulation. Some features of the impact force waveform of soft materials could be explained by the SLS model. Furthermore, the thorn-shape waveform could also be observed in the impact force waveforms of human skin and free-falling hollow balls.
文摘The present study is focused on the roadway support in high stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rheological deformation. Furthermore, on the basis of analyzing physico chemical component of surrounding rock and the situation of the damaged roadway, the method of adopting strong bolting and shotcreting mesh for the primary support, bolting and grouting for the secondary support is put forward in light of the on the spot investigation of stress tension, mechanical parameter and engineering geology. The application reveals the method facilitates the continuation of west main roadway and the restoration of shaft station and chambers. Consequently, better techno economic results have been achieved.
文摘This paper deals with the problem of force-closure analysis for soft multi-fingered grasps. The first step is the study of the relationship between the external wrench space and the manipulation force space at any contact. Constraint force set, strictly constraint force set and normal force set are defined in the contact force space, followed by an investigation of their relationships. Based on the convexity of the friction constraints for soft finger contact, the necessary and sufficient conditions for force-closure grasps are derived. Accordingly an efficient algorithm for testing force-closure is presented. Some illustrative examples are given.
基金supported by the National Natural Science Foundation of China(Grant Nos.52188102 and U1613204)。
文摘Broad output force and speed ranges are highly desired for actuators to endow soft robots with high performance,thereby increasing the range of tasks they can accomplish.However,limited by their low structural stiffness and single actuation method,most of the existed soft actuators are still difficult to achieve a broad force and speed range with a relatively compact body structure.Here,we propose a pneumatic and tendon actuation coupled soft actuator(PTCSA)with multiple actuation modes,mainly composing of a multi-joint thermoplastic polyurethanes(TPU)-made skeleton sealed in a film sleeve.The TPU skeleton with certain structural stiffness combined with soft joints allows PTCSA to output small force and respond rapidly under pneumatic actuation,as well as output high force and flexibly regulate response speed under tendon actuation,therefore achieving a broad force and speed range with a compact structure.The multiple modes constructed from the two actuation methods with different force and speed properties can cover diverse application scenarios.To demonstrate its performance,PTCSA is further used to construct a soft robotic arm(with a maximum lifting speed of 198°/s and can easily lift a load of 200 g),an inchworm-inspired wheel-footed soft robot(moves at a high speed of 2.13 cm/s when unload or pulls a load of 300 g forward),and a soft gripper(can grasp diverse objects,from 0.1 g potato chips to an 850 g roll of Sn-0.7 Cu wire,from a high-speed moving tennis ball to an upright pen).This work indicates the potential of combining multiple complementary actuation methods to improve the force and speed range of soft actuators,and may provide inspiration for related research.