This paper presents an RF receiver of zero-Intermediate Frequency(IF) architecture for Cognitive Radio(CR) communication systems.Zero-IF architecture reduce the image reject filter and IF filter,so it is excellent in ...This paper presents an RF receiver of zero-Intermediate Frequency(IF) architecture for Cognitive Radio(CR) communication systems.Zero-IF architecture reduce the image reject filter and IF filter,so it is excellent in low cost,compact volume,and low power dissipation.The receiver employs three digital attenuator and a high gain,high linearity low noise amplifier to achieve wide dynamic range of 70 dB and high receiving sensitivity of-81 dBm.A fully balanced I/Q demodulator and a differential Local Oscillator(LO) chips are used to minimize the negative effects caused by second-order distortion and LO leakage.In order to select an 8 MHz-channel from 14 continuous ones located in UHF band(694-806 MHz) accurately,approach of channel selectivity circuits is proposed.The RF receiver has been designed,fabricated,and test.The measured result shows that the noise figure is 3.4 dB,and the error vector magnitude is 7.5% when the input power is-81 dBm.展开更多
The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X ...The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.展开更多
Interference from secondary users to primary users should be avoided in cognitive radio. However, it is difficult to solve the interference problem if the secondary users cannot get the information of the primary rece...Interference from secondary users to primary users should be avoided in cognitive radio. However, it is difficult to solve the interference problem if the secondary users cannot get the information of the primary receivers. Insufficient information of primary users would result in inaccurate spectrum detecting result. To deliver the information of primary users, Receiver Detection Employing Semaphore (ReDES) is proposed in this paper. Primary receiver informs secondary users of its licensed receive frequency according to semaphore architecture directly in ReDES. The semaphore is used to determine the spectrum holes by secondary users. Frequency mapping method is come up with as a realization of ReDES. The procedure and the detailed techniques are illustrated to make ReDES scheme reasonable and feasible. Simulation results show that the proposed scheme can effectively detect the frequencies of primary receivers, and improve the accuracy of spectrum detection.展开更多
A robust digital receiver based on a matched filter (MF) is proposed for the radio frequency identification (RFID) reader system to enhance the reliability of signal processing in the electronic product code (EPC...A robust digital receiver based on a matched filter (MF) is proposed for the radio frequency identification (RFID) reader system to enhance the reliability of signal processing in the electronic product code (EPC) sensor network (ESN). The performance of the proposed receiver is investigated by examining the anti-collision algorithm in the EPC global Class1 Generation2 protocol. The validity and usefulness are demonstrated by both computer simulations and experiments. Based on the verification results, comparing with the conventional zero crossing detector (ZCD) based receiver, the proposed receiver is very robust against strong amplitude distortions and considerable frequency deviations happening on the backscattered signal from a passive tag.展开更多
Radio frequency identification(RFID) is a ubiquitous identification technology nowadays. An on-chip high-performance transmit/receive(T/R) switch is designed and simulated in 0.13-μm CMOS technology for reader-less R...Radio frequency identification(RFID) is a ubiquitous identification technology nowadays. An on-chip high-performance transmit/receive(T/R) switch is designed and simulated in 0.13-μm CMOS technology for reader-less RFID tag. The switch utilizes only the transistor width and length(W/L) optimization, proper gate bias resistor and resistive body floating technique and therefore,exhibits 1 d B insertion loss, 31.5 d B isolation and 29.2 d Bm 1-d B compression point(P1d B). Moreover, the switch dissipates only786.7 n W power for 1.8/0 V control voltages and is capable of switching in 794 fs. Above all, as there is no inductor or capacitor used in the circuit, the size of the switch is 0.00208 mm2 only. This switch will be appropriate for reader-less RFID tag transceiver front-end as well as other wireless transceivers operated at 2.4 GHz band.展开更多
In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a ...In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.展开更多
When there are bigger obstacles in the indoor environment such as elevator, the radio waves basically can not penetrate it. The contribution of received signal strength by transmission and reflection will be greatly r...When there are bigger obstacles in the indoor environment such as elevator, the radio waves basically can not penetrate it. The contribution of received signal strength by transmission and reflection will be greatly reduced, and most of the time, the radio waves will reach the user by bypass diffraction. Therefore, the traditional path loss model is no longer applicable, and the improved model should be proposed. In this paper, we firstly proposed an indoor radio propagation model based on dominant path in which the received signal strength has nothing to do with the direct distance between user and access point, but is related to the length of dominant path. Then on the basis of dominant path model, the NLOS influence is considered in order to further improve the accuracy of dominant path model. Experimental results demonstrated that the proposed dominant path model can improve the accuracy of traditional path loss model remarkably.展开更多
Radio coverage directly affects the network connectivity, which is the foundational issue to ensure the normal operation of the network. Many efforts have been made to estimate the radio coverage of sensor nodes. The ...Radio coverage directly affects the network connectivity, which is the foundational issue to ensure the normal operation of the network. Many efforts have been made to estimate the radio coverage of sensor nodes. The existing approaches (often RSSI measurement-based), however, suffer from heavy measurement cost and are not well suitable for the large-scale densely deployed WSNs. NRC-Map, a novel algorithm is put forward for sensor nodes radio coverage mapping. The algorithm is based on the RSSI values collected by the neighbor nodes. According to the spatial relationship, neighbor nodes are mapping to several overlapped sectors. By use of the least squares fitting method, a log-distance path loss model is established for each sector. Then, the max radius of each sector is computed according to the path loss model and the given signal attenuation threshold. Finally, all the sectors are overlapped to estimate the node radio coverage. Experimental results show that the method is simple and effectively improve the prediction accuracy of the sensor node radio coverage.展开更多
Automatic robot navigation is being utilized in many industries for the purpose of high speed work delivery. Color follower, fix path follower robots are current solution to this activities but dynamic path configurat...Automatic robot navigation is being utilized in many industries for the purpose of high speed work delivery. Color follower, fix path follower robots are current solution to this activities but dynamic path configuration is not possible in these robots. Hence new system proposes effective and fully dynamic path follower robots using RFID and directional antenna. Radio Frequency Identification (RFID) system permits automatic identification of objects with RFID tags using radio waves which have been widely used in mobile robot navigation, localization and mapping both in indoor and outdoor environment. This article presents a navigation strategy for autonomous mobile robot using passive RFID system. Proposed robot system is provided with RFID tag functionality which will load tag number and direction instruction. At some turning point, user will put RF tag, this tag will be read by RF reader which is placed on robot. As per direction instruction robot will change the direction and reach to the destination. Also as per the movement, robot will send its GPS location to PC (Personal Computer) which will be displayed on PC. Hence main goal is to provide more reliable and low energy consumption based indoor positioning system which will be achieved using directional antenna.展开更多
基金Supported by the National High-Tech Project (No. 2009AA011801)National Natural Science Foundation of China (No. 60621002)
文摘This paper presents an RF receiver of zero-Intermediate Frequency(IF) architecture for Cognitive Radio(CR) communication systems.Zero-IF architecture reduce the image reject filter and IF filter,so it is excellent in low cost,compact volume,and low power dissipation.The receiver employs three digital attenuator and a high gain,high linearity low noise amplifier to achieve wide dynamic range of 70 dB and high receiving sensitivity of-81 dBm.A fully balanced I/Q demodulator and a differential Local Oscillator(LO) chips are used to minimize the negative effects caused by second-order distortion and LO leakage.In order to select an 8 MHz-channel from 14 continuous ones located in UHF band(694-806 MHz) accurately,approach of channel selectivity circuits is proposed.The RF receiver has been designed,fabricated,and test.The measured result shows that the noise figure is 3.4 dB,and the error vector magnitude is 7.5% when the input power is-81 dBm.
基金supported by National Natural Science Foundation of China(12273098).
文摘The Shanghai Tianma 65 m radio telescope(TMRT)is a large,fully rotatable radio telescope with multiple scientific purposes.The main body of the telescope and four low-frequency receiving systems,including L,C,and S/X bands,were completed between 2008 and 2012.From 2013 to 2017,four high-frequency receiving systems,including Ku,K,Ka,and Q bands,were constructed and their performance was comprehensively tested.There are three main innovations.(1)A fully movable large radio telescope system with advanced performance and complete functions has been built.(2)An advanced,reliable main reflector adjustment system has been completed,overcoming gravity deformation and creating a large antenna with a main reflective surface accuracy of 0.28 mm(root mean square)for any elevation.(3)Five innovative technologies have been developed to achieve high-precision pointing in any direction within 3″.The TMRT has made a crucial contribution to the orbital measurement and positioning of China’s lunar and deep space probes.Significantly enhancing China's ability to participate in international VLBI observations and radio astronomy,this has facilitated a series of achievements in observational radio astronomical research,in areas such as VLBI,spectral lines,and pulsars.
基金supported by the National High Technology Research and Development Program of China ("863" Program, No.2009AA01Z242)National Natural Science Foundation of China (60972080)
文摘Interference from secondary users to primary users should be avoided in cognitive radio. However, it is difficult to solve the interference problem if the secondary users cannot get the information of the primary receivers. Insufficient information of primary users would result in inaccurate spectrum detecting result. To deliver the information of primary users, Receiver Detection Employing Semaphore (ReDES) is proposed in this paper. Primary receiver informs secondary users of its licensed receive frequency according to semaphore architecture directly in ReDES. The semaphore is used to determine the spectrum holes by secondary users. Frequency mapping method is come up with as a realization of ReDES. The procedure and the detailed techniques are illustrated to make ReDES scheme reasonable and feasible. Simulation results show that the proposed scheme can effectively detect the frequencies of primary receivers, and improve the accuracy of spectrum detection.
基金supported by the Korea Evaluation Institute of Industrial Technology(KEIT),under the R&D Support Program of Ministry of Knowledge Economy,Korea
文摘A robust digital receiver based on a matched filter (MF) is proposed for the radio frequency identification (RFID) reader system to enhance the reliability of signal processing in the electronic product code (EPC) sensor network (ESN). The performance of the proposed receiver is investigated by examining the anti-collision algorithm in the EPC global Class1 Generation2 protocol. The validity and usefulness are demonstrated by both computer simulations and experiments. Based on the verification results, comparing with the conventional zero crossing detector (ZCD) based receiver, the proposed receiver is very robust against strong amplitude distortions and considerable frequency deviations happening on the backscattered signal from a passive tag.
基金supported by the research grant Economic Transformation Programme (ETP-2013-037) from Universiti Kebangsaan Malaysia and the Ministry of Science, Technology and Innovation (MOSTI) respectively
文摘Radio frequency identification(RFID) is a ubiquitous identification technology nowadays. An on-chip high-performance transmit/receive(T/R) switch is designed and simulated in 0.13-μm CMOS technology for reader-less RFID tag. The switch utilizes only the transistor width and length(W/L) optimization, proper gate bias resistor and resistive body floating technique and therefore,exhibits 1 d B insertion loss, 31.5 d B isolation and 29.2 d Bm 1-d B compression point(P1d B). Moreover, the switch dissipates only786.7 n W power for 1.8/0 V control voltages and is capable of switching in 794 fs. Above all, as there is no inductor or capacitor used in the circuit, the size of the switch is 0.00208 mm2 only. This switch will be appropriate for reader-less RFID tag transceiver front-end as well as other wireless transceivers operated at 2.4 GHz band.
基金supported by the National Key Technology Research and Development Program of China (Grant No. 001BA210A03)
文摘In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.
文摘When there are bigger obstacles in the indoor environment such as elevator, the radio waves basically can not penetrate it. The contribution of received signal strength by transmission and reflection will be greatly reduced, and most of the time, the radio waves will reach the user by bypass diffraction. Therefore, the traditional path loss model is no longer applicable, and the improved model should be proposed. In this paper, we firstly proposed an indoor radio propagation model based on dominant path in which the received signal strength has nothing to do with the direct distance between user and access point, but is related to the length of dominant path. Then on the basis of dominant path model, the NLOS influence is considered in order to further improve the accuracy of dominant path model. Experimental results demonstrated that the proposed dominant path model can improve the accuracy of traditional path loss model remarkably.
文摘Radio coverage directly affects the network connectivity, which is the foundational issue to ensure the normal operation of the network. Many efforts have been made to estimate the radio coverage of sensor nodes. The existing approaches (often RSSI measurement-based), however, suffer from heavy measurement cost and are not well suitable for the large-scale densely deployed WSNs. NRC-Map, a novel algorithm is put forward for sensor nodes radio coverage mapping. The algorithm is based on the RSSI values collected by the neighbor nodes. According to the spatial relationship, neighbor nodes are mapping to several overlapped sectors. By use of the least squares fitting method, a log-distance path loss model is established for each sector. Then, the max radius of each sector is computed according to the path loss model and the given signal attenuation threshold. Finally, all the sectors are overlapped to estimate the node radio coverage. Experimental results show that the method is simple and effectively improve the prediction accuracy of the sensor node radio coverage.
文摘Automatic robot navigation is being utilized in many industries for the purpose of high speed work delivery. Color follower, fix path follower robots are current solution to this activities but dynamic path configuration is not possible in these robots. Hence new system proposes effective and fully dynamic path follower robots using RFID and directional antenna. Radio Frequency Identification (RFID) system permits automatic identification of objects with RFID tags using radio waves which have been widely used in mobile robot navigation, localization and mapping both in indoor and outdoor environment. This article presents a navigation strategy for autonomous mobile robot using passive RFID system. Proposed robot system is provided with RFID tag functionality which will load tag number and direction instruction. At some turning point, user will put RF tag, this tag will be read by RF reader which is placed on robot. As per direction instruction robot will change the direction and reach to the destination. Also as per the movement, robot will send its GPS location to PC (Personal Computer) which will be displayed on PC. Hence main goal is to provide more reliable and low energy consumption based indoor positioning system which will be achieved using directional antenna.