Fe(83.2-x)CoxP(10)C6Cu(0.8)(x=0,4,6,8 and 10)alloys with a high amorphous-forming ability and good softmagnetic properties were successfully synthesized.Saturation magnetic flux density(Bs)is effectively enhanced from...Fe(83.2-x)CoxP(10)C6Cu(0.8)(x=0,4,6,8 and 10)alloys with a high amorphous-forming ability and good softmagnetic properties were successfully synthesized.Saturation magnetic flux density(Bs)is effectively enhanced from 1.53 T to 1.61 T for as-quenched alloy by minor Co addition,which is consistent well with the result of the linear relationship between average magnetic moment and magnetic valence.For Cocontained alloys,the value of corecivity(Hc)is mainly determined by magneto-crystalline anisotropy,while effective permeability(μe)is dominated by grain size and average saturation polarization.After proper heat treatment,the Fe(79.2)Co4P(10)C6Cu(0.8)nanocrystalline alloy exhibited excellent soft-magnetic properties including a high Bsof 1.8 T,a low Hcof 6.6 A/m and a highμeof 15,510,which is closely related to the high volume fraction of α-(Fe,Co)grains and refined uniform nanocrystalline microstructure.展开更多
The simultaneous enhancement of magnetic and mechanical properties is desirable but challenging for soft-magnetic materials.A fabrication strategy to meet this requirement is therefore in high demand.Herein,bulk equia...The simultaneous enhancement of magnetic and mechanical properties is desirable but challenging for soft-magnetic materials.A fabrication strategy to meet this requirement is therefore in high demand.Herein,bulk equiatomic dual-phase AlCoFeMnNi high-entropy alloys were fabricated via a magnetic levitation induction melting and casting process followed by annealing at 700-1000℃,and their microstructures as well as mechanical and magnetic properties were investigated.The as-cast alloy possessed a single metastable B2-ordered solid solution that decomposed upon annealing into a dual-phase structure comprising an Al-and Ni-rich body-centered cubic(BCC)matrix and Fe-and Mn-rich face-centered cubic(FCC)precipitates both in the grain interior and along the grain boundaries.The magnetic and mechanical properties were closely related to the relative volume fraction of FCC in the alloy.The FCC volume fraction could be increased by increasing the annealing temperature,thereby offering tunable properties.The optimal annealing temperature for balanced magnetic and mechanical properties was found to be 800℃.The alloy annealed at this temperature had an average BCC grain size of 12±3μm and FCC volume fraction of 41±4%.Correspondingly,the s aturation magnetization and coercivity reached 82.57 Am^2/kg and 433 A/m,respectively.The compressive yield strength and fracture strength were 1022 and 2539 MPa,respectively,and the plasticity was 33%.Owing to its adjustable microstructure and properties,the AlCoFeMnNi alloy has potential for use as a multi-functional soft-magnetic material.展开更多
The effect of Ni addition on the glass-forming ability (GFA) and soft-magnetic properties of an (Fe1-xNix)75.5B14.5P7Nb3 (x=0-0.6) alloy system were investigated. We found that the addition of Ni was effective in allo...The effect of Ni addition on the glass-forming ability (GFA) and soft-magnetic properties of an (Fe1-xNix)75.5B14.5P7Nb3 (x=0-0.6) alloy system were investigated. We found that the addition of Ni was effective in allowing the alloy to approach a eutectic point as well as increasing the thermal stability of the supercooled liquid. By increasing the amount of Ni,the supercooled liquid region (ΔTx),the reduced glass transition temperature Trg (Tg/Tl) and the Y parameter [Tx/(Tg+Tl)] increased from 49 to 75 K,0.540 to 0.594 and 0.373 to 0.405,respectively. As a result,novel (Fe1-xNix)75.5B14.5P7Nb3 bulk metallic glass (BMG) rods with a maximum diameter of 1 mm were synthesized with a composition of x=0.5 and x=0.6 by copper mold casting. These metallic glasses have a moderate saturation magnetization of 0.37-1.20 T with good soft-magnetic properties,i.e. a low coercivity of 1.4-3.3 A/m and a high effective permeability of 13100-20900 at 1 kHz. The simultaneous achievement of a high GFA and good soft-magnetic properties for the FeNi-based alloy system is promising for the future development of BMGs.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300502)the National Natural Science Foundation of China (Grant Nos. 51631003, 51401052, 51871237 and 51501037)
文摘Fe(83.2-x)CoxP(10)C6Cu(0.8)(x=0,4,6,8 and 10)alloys with a high amorphous-forming ability and good softmagnetic properties were successfully synthesized.Saturation magnetic flux density(Bs)is effectively enhanced from 1.53 T to 1.61 T for as-quenched alloy by minor Co addition,which is consistent well with the result of the linear relationship between average magnetic moment and magnetic valence.For Cocontained alloys,the value of corecivity(Hc)is mainly determined by magneto-crystalline anisotropy,while effective permeability(μe)is dominated by grain size and average saturation polarization.After proper heat treatment,the Fe(79.2)Co4P(10)C6Cu(0.8)nanocrystalline alloy exhibited excellent soft-magnetic properties including a high Bsof 1.8 T,a low Hcof 6.6 A/m and a highμeof 15,510,which is closely related to the high volume fraction of α-(Fe,Co)grains and refined uniform nanocrystalline microstructure.
基金the Fundamental Research Funds for the Central Universities(NO.2018CDPTCG0001/42)National Special Support Program for High-Level Personnel RecruitmentGDAS’Project of Science and Technology Development(No.2020GDASYL-20200102030)。
文摘The simultaneous enhancement of magnetic and mechanical properties is desirable but challenging for soft-magnetic materials.A fabrication strategy to meet this requirement is therefore in high demand.Herein,bulk equiatomic dual-phase AlCoFeMnNi high-entropy alloys were fabricated via a magnetic levitation induction melting and casting process followed by annealing at 700-1000℃,and their microstructures as well as mechanical and magnetic properties were investigated.The as-cast alloy possessed a single metastable B2-ordered solid solution that decomposed upon annealing into a dual-phase structure comprising an Al-and Ni-rich body-centered cubic(BCC)matrix and Fe-and Mn-rich face-centered cubic(FCC)precipitates both in the grain interior and along the grain boundaries.The magnetic and mechanical properties were closely related to the relative volume fraction of FCC in the alloy.The FCC volume fraction could be increased by increasing the annealing temperature,thereby offering tunable properties.The optimal annealing temperature for balanced magnetic and mechanical properties was found to be 800℃.The alloy annealed at this temperature had an average BCC grain size of 12±3μm and FCC volume fraction of 41±4%.Correspondingly,the s aturation magnetization and coercivity reached 82.57 Am^2/kg and 433 A/m,respectively.The compressive yield strength and fracture strength were 1022 and 2539 MPa,respectively,and the plasticity was 33%.Owing to its adjustable microstructure and properties,the AlCoFeMnNi alloy has potential for use as a multi-functional soft-magnetic material.
基金supported by the National Science Fund for Distinguished Young Scholars (50825103)the National High Technology Research and Development Program of China (2009AA03Z214)the Hundred Talents Program of the Chinese Academy of Sciences (KGCX-2-YW-803)
文摘The effect of Ni addition on the glass-forming ability (GFA) and soft-magnetic properties of an (Fe1-xNix)75.5B14.5P7Nb3 (x=0-0.6) alloy system were investigated. We found that the addition of Ni was effective in allowing the alloy to approach a eutectic point as well as increasing the thermal stability of the supercooled liquid. By increasing the amount of Ni,the supercooled liquid region (ΔTx),the reduced glass transition temperature Trg (Tg/Tl) and the Y parameter [Tx/(Tg+Tl)] increased from 49 to 75 K,0.540 to 0.594 and 0.373 to 0.405,respectively. As a result,novel (Fe1-xNix)75.5B14.5P7Nb3 bulk metallic glass (BMG) rods with a maximum diameter of 1 mm were synthesized with a composition of x=0.5 and x=0.6 by copper mold casting. These metallic glasses have a moderate saturation magnetization of 0.37-1.20 T with good soft-magnetic properties,i.e. a low coercivity of 1.4-3.3 A/m and a high effective permeability of 13100-20900 at 1 kHz. The simultaneous achievement of a high GFA and good soft-magnetic properties for the FeNi-based alloy system is promising for the future development of BMGs.