Fe(83.2-x)CoxP(10)C6Cu(0.8)(x=0,4,6,8 and 10)alloys with a high amorphous-forming ability and good softmagnetic properties were successfully synthesized.Saturation magnetic flux density(Bs)is effectively enhanced from...Fe(83.2-x)CoxP(10)C6Cu(0.8)(x=0,4,6,8 and 10)alloys with a high amorphous-forming ability and good softmagnetic properties were successfully synthesized.Saturation magnetic flux density(Bs)is effectively enhanced from 1.53 T to 1.61 T for as-quenched alloy by minor Co addition,which is consistent well with the result of the linear relationship between average magnetic moment and magnetic valence.For Cocontained alloys,the value of corecivity(Hc)is mainly determined by magneto-crystalline anisotropy,while effective permeability(μe)is dominated by grain size and average saturation polarization.After proper heat treatment,the Fe(79.2)Co4P(10)C6Cu(0.8)nanocrystalline alloy exhibited excellent soft-magnetic properties including a high Bsof 1.8 T,a low Hcof 6.6 A/m and a highμeof 15,510,which is closely related to the high volume fraction of α-(Fe,Co)grains and refined uniform nanocrystalline microstructure.展开更多
The simultaneous enhancement of magnetic and mechanical properties is desirable but challenging for soft-magnetic materials.A fabrication strategy to meet this requirement is therefore in high demand.Herein,bulk equia...The simultaneous enhancement of magnetic and mechanical properties is desirable but challenging for soft-magnetic materials.A fabrication strategy to meet this requirement is therefore in high demand.Herein,bulk equiatomic dual-phase AlCoFeMnNi high-entropy alloys were fabricated via a magnetic levitation induction melting and casting process followed by annealing at 700-1000℃,and their microstructures as well as mechanical and magnetic properties were investigated.The as-cast alloy possessed a single metastable B2-ordered solid solution that decomposed upon annealing into a dual-phase structure comprising an Al-and Ni-rich body-centered cubic(BCC)matrix and Fe-and Mn-rich face-centered cubic(FCC)precipitates both in the grain interior and along the grain boundaries.The magnetic and mechanical properties were closely related to the relative volume fraction of FCC in the alloy.The FCC volume fraction could be increased by increasing the annealing temperature,thereby offering tunable properties.The optimal annealing temperature for balanced magnetic and mechanical properties was found to be 800℃.The alloy annealed at this temperature had an average BCC grain size of 12±3μm and FCC volume fraction of 41±4%.Correspondingly,the s aturation magnetization and coercivity reached 82.57 Am^2/kg and 433 A/m,respectively.The compressive yield strength and fracture strength were 1022 and 2539 MPa,respectively,and the plasticity was 33%.Owing to its adjustable microstructure and properties,the AlCoFeMnNi alloy has potential for use as a multi-functional soft-magnetic material.展开更多
The simultaneous strengthening of mechanical and magnetic properties is an ideal fabrication strategy for soft-magnetic materials. A non-equiatomic Al19Co20Fe20Ni41 eutectic high-entropy alloy was prepared to investig...The simultaneous strengthening of mechanical and magnetic properties is an ideal fabrication strategy for soft-magnetic materials. A non-equiatomic Al19Co20Fe20Ni41 eutectic high-entropy alloy was prepared to investigate the alloying effect of B on the microstructure evolution, phase formation, mechanical and soft-magnetic properties. With the increase in B content, the microstructures of(Al19Co20Fe20Ni41)100-xBx alloys transformed from the initial lamellar eutectic structure(x=0) to the divorced eutectic structure(x>0.6). Fine borides precipitated in the intergranular phase(x≥0.6). The hardness of alloys increased from HV 328.66 to HV 436.34 and the compression mechanical performance displayed a transition from plastic material to brittle material. The Al19Co20Fe20Ni41 alloy possesses good soft-magnetic properties, and the minor B addition has little effect on it. Increasing the resistivity can effectively reduce the eddy current loss when used as a soft-magnetic material.展开更多
High-performance submicron-scaled NiCuZn ferrites are prepared by the solid-state reaction method through using CuO as additive. In the synthesis process, a mixture of superfine powder is sintered at 900?C for 3 h, a...High-performance submicron-scaled NiCuZn ferrites are prepared by the solid-state reaction method through using CuO as additive. In the synthesis process, a mixture of superfine powder is sintered at 900?C for 3 h, and the obtained product is Ni Zn-ferrite with spinel structure. We observe that the particle size increases with raising the sintering temperature. The NiCuZn ferrite with relatively uniform size and granular shape has the best performance: its coercivity is 14 Oe(1 Oe = 79.5775 A·m^-1) and saturation magnetization is 48 emu/g. We also study the effects of particle size, magnetocrystalline anisotropy, and microstructure on coercivity. The method presented here is convenient and economical for producing the high-permeability ferrite powders.展开更多
A study of the phase transformation process of a Fe-Ni-B-Si-P-Nb metallic glass using a suite of advanced characterization tools is reported.Transmission electron microscopy(TEM)and small angle neutron scattering(SANS...A study of the phase transformation process of a Fe-Ni-B-Si-P-Nb metallic glass using a suite of advanced characterization tools is reported.Transmission electron microscopy(TEM)and small angle neutron scattering(SANS)experiments show that the as-spun metallic glass ribbon has a dual-phase structure with bcc nanoclusters of a size of 2-3 nm.In situ high-energy X-ray diffraction(XRD)reveals a three-stage crystallization process when heating the metallic glass into supercooled liquid states.The isothermal annealing experiment shows the nanoclusters grow instantly without incubation.The easy formation and phase stability of the nanoclusters are due to the low interfacial energy between the amorphous matrix and clusters,as real space analysis shows that the nanoclusters and the amorphous matrix share similar short-to-mediumrange orders.We further find that the dual-phase structure reduces local magneto-anisotropy and enhances effective magnetic permeability,resulting in an excellent stressimpedance effect without sacrificing coercivity.Our work sheds light on the structure-property engineering of soft magnetic metallic glasses and provides a foundation for developing novel magnetic functional materials with nanostructured dual-phases.展开更多
The harsh melt-spinning and annealing processes of high saturation magnetization nanocrystalline softmagnetic alloys are the biggest obstacles for their industrialization. Here, we proposed a novel strategy to enlarge...The harsh melt-spinning and annealing processes of high saturation magnetization nanocrystalline softmagnetic alloys are the biggest obstacles for their industrialization. Here, we proposed a novel strategy to enlarge the processing window by annealing the partially crystallized precursor ribbons via a heterostructured crystallization process. The heterostructured evolution of Fe_(84.75)Si_(2)B_(9)P_(3)_(C0.5)Cu_(0.75)(at.%)alloy ribbons with different spinning rate were studied in detail, to demonstrate the gradient nucleation and grain refinement mechanisms. The nanocrystalline alloys made with industrially acceptable spinning rate of 25-30 m/s and normal annealing process exhibit excellent magnetic properties and fine nanostructure. The small quenched-in crystals/clusters in the free surface of the low spinning rate ribbons will not grow to coarse grains, because of the competitive grain growth and shielding effect of metalloid elements rich interlayer with a high stability. Avoiding the precipitation of quenched-in coarse grains in precursor ribbons is thus a new criterion for the composition and process design, which is more convenient than the former one with respect to the homogenous crystallization mechanism, and enable us to produce high performance nanocrystalline soft-magnetic alloys. This strategy is also suitable for improving the compositional adjustability, impurity tolerance, and enlarging the window of melt temperature,which is an important reference for the future development of composition and process.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300502)the National Natural Science Foundation of China (Grant Nos. 51631003, 51401052, 51871237 and 51501037)
文摘Fe(83.2-x)CoxP(10)C6Cu(0.8)(x=0,4,6,8 and 10)alloys with a high amorphous-forming ability and good softmagnetic properties were successfully synthesized.Saturation magnetic flux density(Bs)is effectively enhanced from 1.53 T to 1.61 T for as-quenched alloy by minor Co addition,which is consistent well with the result of the linear relationship between average magnetic moment and magnetic valence.For Cocontained alloys,the value of corecivity(Hc)is mainly determined by magneto-crystalline anisotropy,while effective permeability(μe)is dominated by grain size and average saturation polarization.After proper heat treatment,the Fe(79.2)Co4P(10)C6Cu(0.8)nanocrystalline alloy exhibited excellent soft-magnetic properties including a high Bsof 1.8 T,a low Hcof 6.6 A/m and a highμeof 15,510,which is closely related to the high volume fraction of α-(Fe,Co)grains and refined uniform nanocrystalline microstructure.
基金the Fundamental Research Funds for the Central Universities(NO.2018CDPTCG0001/42)National Special Support Program for High-Level Personnel RecruitmentGDAS’Project of Science and Technology Development(No.2020GDASYL-20200102030)。
文摘The simultaneous enhancement of magnetic and mechanical properties is desirable but challenging for soft-magnetic materials.A fabrication strategy to meet this requirement is therefore in high demand.Herein,bulk equiatomic dual-phase AlCoFeMnNi high-entropy alloys were fabricated via a magnetic levitation induction melting and casting process followed by annealing at 700-1000℃,and their microstructures as well as mechanical and magnetic properties were investigated.The as-cast alloy possessed a single metastable B2-ordered solid solution that decomposed upon annealing into a dual-phase structure comprising an Al-and Ni-rich body-centered cubic(BCC)matrix and Fe-and Mn-rich face-centered cubic(FCC)precipitates both in the grain interior and along the grain boundaries.The magnetic and mechanical properties were closely related to the relative volume fraction of FCC in the alloy.The FCC volume fraction could be increased by increasing the annealing temperature,thereby offering tunable properties.The optimal annealing temperature for balanced magnetic and mechanical properties was found to be 800℃.The alloy annealed at this temperature had an average BCC grain size of 12±3μm and FCC volume fraction of 41±4%.Correspondingly,the s aturation magnetization and coercivity reached 82.57 Am^2/kg and 433 A/m,respectively.The compressive yield strength and fracture strength were 1022 and 2539 MPa,respectively,and the plasticity was 33%.Owing to its adjustable microstructure and properties,the AlCoFeMnNi alloy has potential for use as a multi-functional soft-magnetic material.
基金financially supported by the National Natural Science Foundation of China (51671214,51871238)Xuzhou Achievements Transformation Project (KC19235),China。
文摘The simultaneous strengthening of mechanical and magnetic properties is an ideal fabrication strategy for soft-magnetic materials. A non-equiatomic Al19Co20Fe20Ni41 eutectic high-entropy alloy was prepared to investigate the alloying effect of B on the microstructure evolution, phase formation, mechanical and soft-magnetic properties. With the increase in B content, the microstructures of(Al19Co20Fe20Ni41)100-xBx alloys transformed from the initial lamellar eutectic structure(x=0) to the divorced eutectic structure(x>0.6). Fine borides precipitated in the intergranular phase(x≥0.6). The hardness of alloys increased from HV 328.66 to HV 436.34 and the compression mechanical performance displayed a transition from plastic material to brittle material. The Al19Co20Fe20Ni41 alloy possesses good soft-magnetic properties, and the minor B addition has little effect on it. Increasing the resistivity can effectively reduce the eddy current loss when used as a soft-magnetic material.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1117413211474151+6 种基金and U1232210)the National Key Project for Basic ResearchChina(Grant Nos.2011CB922102 and 2012CB932304)the Innovation Program for Doctoral Research of Jiangsu ProvinceChina(Grant No.CXZZ13 0035)the Priority Academic Program Development of Jiangsu Provincial Higher Education InstitutionsChina
文摘High-performance submicron-scaled NiCuZn ferrites are prepared by the solid-state reaction method through using CuO as additive. In the synthesis process, a mixture of superfine powder is sintered at 900?C for 3 h, and the obtained product is Ni Zn-ferrite with spinel structure. We observe that the particle size increases with raising the sintering temperature. The NiCuZn ferrite with relatively uniform size and granular shape has the best performance: its coercivity is 14 Oe(1 Oe = 79.5775 A·m^-1) and saturation magnetization is 48 emu/g. We also study the effects of particle size, magnetocrystalline anisotropy, and microstructure on coercivity. The method presented here is convenient and economical for producing the high-permeability ferrite powders.
基金financially supported by the National Key R&D Program of China(No.2021YFB3802800)the National Natural Science Foundation of China(Nos.52222104,12261160364,51871120,52201190 and 51520105001)+6 种基金the Natural Science Foundation of Jiangsu Province(No.BK20200019)the support by Shenzhen Science and Technology Innovation Commission(No.JCYJ202000109105618137)the support by Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technologythe support of Shenzhen Science and Technology Innovation Committee(No.JCYJ20170413140446951)partial support by the Research Grants Council of the Hong Kong Special Administrative Region(No.CityU173/22)the support of the Youth Innovation Promotion Association,CAS(No.2020010)This research used the resources of the Advanced Photon Source,a US Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory(No.DE-AC02-06CH11357)。
文摘A study of the phase transformation process of a Fe-Ni-B-Si-P-Nb metallic glass using a suite of advanced characterization tools is reported.Transmission electron microscopy(TEM)and small angle neutron scattering(SANS)experiments show that the as-spun metallic glass ribbon has a dual-phase structure with bcc nanoclusters of a size of 2-3 nm.In situ high-energy X-ray diffraction(XRD)reveals a three-stage crystallization process when heating the metallic glass into supercooled liquid states.The isothermal annealing experiment shows the nanoclusters grow instantly without incubation.The easy formation and phase stability of the nanoclusters are due to the low interfacial energy between the amorphous matrix and clusters,as real space analysis shows that the nanoclusters and the amorphous matrix share similar short-to-mediumrange orders.We further find that the dual-phase structure reduces local magneto-anisotropy and enhances effective magnetic permeability,resulting in an excellent stressimpedance effect without sacrificing coercivity.Our work sheds light on the structure-property engineering of soft magnetic metallic glasses and provides a foundation for developing novel magnetic functional materials with nanostructured dual-phases.
基金supported financially by the National Key Research and Development Program of China (No.2016YFB0300501)the National Natural Science Foundation of China (Nos.51771159,51774217,51801224,51971186)+3 种基金the Zhejiang Provincial Natural Science Foundation (No.LQ18E010006)the Ningbo Major Special Projects of the Plan"Science and Technology Innovation 2025"(No.2018B10084)financial support from general research fund (GRF)the Hong Kong Government,through the general research fund (GRF,Nos.CityU11200719,CityU11213118 and CityU11209317)。
文摘The harsh melt-spinning and annealing processes of high saturation magnetization nanocrystalline softmagnetic alloys are the biggest obstacles for their industrialization. Here, we proposed a novel strategy to enlarge the processing window by annealing the partially crystallized precursor ribbons via a heterostructured crystallization process. The heterostructured evolution of Fe_(84.75)Si_(2)B_(9)P_(3)_(C0.5)Cu_(0.75)(at.%)alloy ribbons with different spinning rate were studied in detail, to demonstrate the gradient nucleation and grain refinement mechanisms. The nanocrystalline alloys made with industrially acceptable spinning rate of 25-30 m/s and normal annealing process exhibit excellent magnetic properties and fine nanostructure. The small quenched-in crystals/clusters in the free surface of the low spinning rate ribbons will not grow to coarse grains, because of the competitive grain growth and shielding effect of metalloid elements rich interlayer with a high stability. Avoiding the precipitation of quenched-in coarse grains in precursor ribbons is thus a new criterion for the composition and process design, which is more convenient than the former one with respect to the homogenous crystallization mechanism, and enable us to produce high performance nanocrystalline soft-magnetic alloys. This strategy is also suitable for improving the compositional adjustability, impurity tolerance, and enlarging the window of melt temperature,which is an important reference for the future development of composition and process.