This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with v...This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with valley switching (CCMVS) is employed to realize soft switching so as to reduce turn-on loss of power switch as well as conducted electromagnetic interference (EMI). At light load, the converter operates in discontinuous conduction mode (DCM) with valley switching and adaptive off-time control (AOT) to limit the switching frequency range and maintain load regulation. At extremely light load or in standby mode, burst mode operation is adopted to provide low power consumption through reducing both switching frequency and static power dissipation of the controller. The multi-mode control is implemented by an oscillator whose pulse duration is adjusted by output feedback. An accurate valley switching control circuit guarantees the minimum turn-on voltage drop of power switch. The pro-totype of the controller IC was fabricated in a 1.5-μm BiCMOS process and applied to a 310 V/20 V, 90 W flyback DC/DC converter circuitry. Experimental results showed that all expected functions were realized successfully. The flyback converter achieved a high efficiency of over 80% from full load down to 2.5 W, with the maximum reaching 88.8%, while the total power consumption in standby mode was about 300 mW.展开更多
The full-bridge zero-voltage and zero-current switching inverter, which can adjust the output power by keeping the duty-cycle of lagging arm constant, changing the duty-cycle of leading arm, is a common circuit topolo...The full-bridge zero-voltage and zero-current switching inverter, which can adjust the output power by keeping the duty-cycle of lagging arm constant, changing the duty-cycle of leading arm, is a common circuit topology of soft-switching inverter arc welding power supplies. However, the output power still remains a certain value when the duty-cycle of leading arm decreases to zero. The working-mode of soft-switching inverter and the waveforms of major parameters with the condition of duty-cycle of leading arm being zero are studied in this paper. U-1 characteristic experiments prove that the minimum output power of soft-switching circuit, which depends on the charged voltage of capacitors in parallel with leading arm, can be decreased by reducing the duty-cycle of lagging arm. By switching working-modes between half-bridge and full-bridge, the output power can swing from zero to the power rating.展开更多
The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been c...The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.展开更多
Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis...Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis, PSIM simulation and circuit experiment. A special limitation of soft-switching techniques has been found in their AC/DC applications.展开更多
A novel 60 kW plasma converter with full range soft-switch by utilizing magnetizing inductance, leakage inductance and distributed inductance is introduced. The current injection phase-shifting technique is introduced...A novel 60 kW plasma converter with full range soft-switch by utilizing magnetizing inductance, leakage inductance and distributed inductance is introduced. The current injection phase-shifting technique is introduced into the research of soft-switching plasma converter successfully. The magnetic bias of transformer and the protection of switching parts are solved. The tests state that the power supply has excellent characteristics and higher efficiency and can meet the demand of large power plasma process well.展开更多
在传统感应耦合电能传输(inductively coupled power transfer,ICPT)系统拓扑中,系统谐振频率漂移会引起传输效率下降。针对该问题,提出一种新型的基于LCL谐振型ICPT系统拓扑。采用基波分析法对其等效电路模型进行分析,得出不同品质因数...在传统感应耦合电能传输(inductively coupled power transfer,ICPT)系统拓扑中,系统谐振频率漂移会引起传输效率下降。针对该问题,提出一种新型的基于LCL谐振型ICPT系统拓扑。采用基波分析法对其等效电路模型进行分析,得出不同品质因数下,系统的电压、电流增益与开关频率的特性曲线,并分析得出该拓扑具有较高的功率因数。为实现了ICPT系统软开关,提出了谐振元件参数优化设计的方法。基于所优化的参数结果,分析了品质因数和耦合系数的选择对谐振元件电压电流应力的影响。最后,设计了一台基于LCL谐振型ICPT系统样机,实验结果证明了所提方法的可行性。展开更多
为提高国产多功能焊机在严酷的核电施工环境下的可靠性和综合使用性能,采用基于ARM(Advanced R ISC Machine)的占先式嵌入式控制系统,结合软开关高频逆变技术,实现逆变焊机的数字化控制和功率器件的绿色化开关,以进一步提高系统的可靠...为提高国产多功能焊机在严酷的核电施工环境下的可靠性和综合使用性能,采用基于ARM(Advanced R ISC Machine)的占先式嵌入式控制系统,结合软开关高频逆变技术,实现逆变焊机的数字化控制和功率器件的绿色化开关,以进一步提高系统的可靠性和动态响应能力.通过对电源输出特性的优化设计,实现直流/脉冲输出,提高一次引弧成功率,改善引弧及焊接性能,提高焊接质量,最终达到核电工程建设的要求.展开更多
基金the National Natural Science Foundation of China (No. 90707002)the Natural Science Foundation of Zheji-ang Province, China (No. Z104441)
文摘This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with valley switching (CCMVS) is employed to realize soft switching so as to reduce turn-on loss of power switch as well as conducted electromagnetic interference (EMI). At light load, the converter operates in discontinuous conduction mode (DCM) with valley switching and adaptive off-time control (AOT) to limit the switching frequency range and maintain load regulation. At extremely light load or in standby mode, burst mode operation is adopted to provide low power consumption through reducing both switching frequency and static power dissipation of the controller. The multi-mode control is implemented by an oscillator whose pulse duration is adjusted by output feedback. An accurate valley switching control circuit guarantees the minimum turn-on voltage drop of power switch. The pro-totype of the controller IC was fabricated in a 1.5-μm BiCMOS process and applied to a 310 V/20 V, 90 W flyback DC/DC converter circuitry. Experimental results showed that all expected functions were realized successfully. The flyback converter achieved a high efficiency of over 80% from full load down to 2.5 W, with the maximum reaching 88.8%, while the total power consumption in standby mode was about 300 mW.
文摘The full-bridge zero-voltage and zero-current switching inverter, which can adjust the output power by keeping the duty-cycle of lagging arm constant, changing the duty-cycle of leading arm, is a common circuit topology of soft-switching inverter arc welding power supplies. However, the output power still remains a certain value when the duty-cycle of leading arm decreases to zero. The working-mode of soft-switching inverter and the waveforms of major parameters with the condition of duty-cycle of leading arm being zero are studied in this paper. U-1 characteristic experiments prove that the minimum output power of soft-switching circuit, which depends on the charged voltage of capacitors in parallel with leading arm, can be decreased by reducing the duty-cycle of lagging arm. By switching working-modes between half-bridge and full-bridge, the output power can swing from zero to the power rating.
文摘The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.
基金Sponsored by the Scientific Research Foundaltion fbr the Returned Overseas Chinese Scholars,Ministry of Education
文摘Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis, PSIM simulation and circuit experiment. A special limitation of soft-switching techniques has been found in their AC/DC applications.
基金This project is supported by National Natural Science Foundation of China (No.59975030)Provincial Natural Science Foundation of Guangdong,China(No.04300691).
文摘A novel 60 kW plasma converter with full range soft-switch by utilizing magnetizing inductance, leakage inductance and distributed inductance is introduced. The current injection phase-shifting technique is introduced into the research of soft-switching plasma converter successfully. The magnetic bias of transformer and the protection of switching parts are solved. The tests state that the power supply has excellent characteristics and higher efficiency and can meet the demand of large power plasma process well.
文摘在传统感应耦合电能传输(inductively coupled power transfer,ICPT)系统拓扑中,系统谐振频率漂移会引起传输效率下降。针对该问题,提出一种新型的基于LCL谐振型ICPT系统拓扑。采用基波分析法对其等效电路模型进行分析,得出不同品质因数下,系统的电压、电流增益与开关频率的特性曲线,并分析得出该拓扑具有较高的功率因数。为实现了ICPT系统软开关,提出了谐振元件参数优化设计的方法。基于所优化的参数结果,分析了品质因数和耦合系数的选择对谐振元件电压电流应力的影响。最后,设计了一台基于LCL谐振型ICPT系统样机,实验结果证明了所提方法的可行性。
文摘为提高国产多功能焊机在严酷的核电施工环境下的可靠性和综合使用性能,采用基于ARM(Advanced R ISC Machine)的占先式嵌入式控制系统,结合软开关高频逆变技术,实现逆变焊机的数字化控制和功率器件的绿色化开关,以进一步提高系统的可靠性和动态响应能力.通过对电源输出特性的优化设计,实现直流/脉冲输出,提高一次引弧成功率,改善引弧及焊接性能,提高焊接质量,最终达到核电工程建设的要求.