This paper proposes a family of PWM modulation strategies for boostfull-bridge (FB) converters. The modulation strategies can be classified into two kinds according tothe turn-on sequence of the diagonal switches. The...This paper proposes a family of PWM modulation strategies for boostfull-bridge (FB) converters. The modulation strategies can be classified into two kinds according tothe turn-on sequence of the diagonal switches. The concept of leading switches and lagging switchesis introduced to realize soft-switching. According to the soft-switching realized by the leadingswitches and the lagging switches, two kinds of soft-switching techniques for PWM boost FBconverters yield: zero-current-switching (ZCS) and zero-current and zero-voltage-switching (ZCZVS).Simulation results verify the analysis.展开更多
A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (z...A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.展开更多
针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预...针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预测直接功率控制(model predictive direct power control,MPDPC)的双闭环控制算法。其中,外环基于自抗扰控制理论,构建了基于误差驱动的ADRC(error-based ADRC,EADRC)控制器调节直流侧电压;内环结合基于内模原理的功率补偿方案使用两步MPDPC算法实现电流信号的控制。仿真和实验将所提自抗扰模型预测直接功率控制(ADRC-MPDPC)算法与传统基于比例积分的直接功率控制(proportional integral-based direct power control,PI-DPC)算法和PI-MPDPC方法进行对比,结果表明所提策略在系统启动、负载变化及工况切换等场景表现出更优的动态特性和鲁棒性能。展开更多
文摘This paper proposes a family of PWM modulation strategies for boostfull-bridge (FB) converters. The modulation strategies can be classified into two kinds according tothe turn-on sequence of the diagonal switches. The concept of leading switches and lagging switchesis introduced to realize soft-switching. According to the soft-switching realized by the leadingswitches and the lagging switches, two kinds of soft-switching techniques for PWM boost FBconverters yield: zero-current-switching (ZCS) and zero-current and zero-voltage-switching (ZCZVS).Simulation results verify the analysis.
文摘A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.
文摘针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预测直接功率控制(model predictive direct power control,MPDPC)的双闭环控制算法。其中,外环基于自抗扰控制理论,构建了基于误差驱动的ADRC(error-based ADRC,EADRC)控制器调节直流侧电压;内环结合基于内模原理的功率补偿方案使用两步MPDPC算法实现电流信号的控制。仿真和实验将所提自抗扰模型预测直接功率控制(ADRC-MPDPC)算法与传统基于比例积分的直接功率控制(proportional integral-based direct power control,PI-DPC)算法和PI-MPDPC方法进行对比,结果表明所提策略在系统启动、负载变化及工况切换等场景表现出更优的动态特性和鲁棒性能。