In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second...In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.展开更多
The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothi...The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothing filtering methods are proposed to solve the problem. These methods include adopting method of arithmetic moving average, center of gravity, least squares of polynomial, slide converter of discrete funcion convolution etc. The process of spectrum data is realized, and the results are assessed in H/FWHM( Peak High/Full Width at Half Maximum) and peak area based on the Matlab programming. The results indicate that different methods smoothed spectrum have respective superiority in different ergoregion, but the Gaussian function theory in discrete function convolution slide method is used to filter the complex y-spectrum on Embedded system nlatform, and the statistical fluctuation of y-snectrum filtered wall.展开更多
Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like...Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like transform that analyzes seismic data following variable slopes of seismic events. The local slope is the key of seismic data. An earlier work used traditional normal moveout(NMO) equation to construct velocity-dependent(VD) seislet transform, which only adapt to hyperbolic condition. In this work, we use shifted hyperbola NMO equation to obtain more accurate slopes in nonhyperbolic situation. Self-adaptive threshold method was used to remove random noise while preserving useful signal. The synthetic and field data tests demonstrate that this method is more suitable for noise attenuation.展开更多
In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. ...In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity展开更多
Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. Howe...Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. However, due to the traditional ELM shallow architecture, it requires a large number of hidden nodes when dealing with high-dimensional data sets to ensure its classification performance. The other aspect, it is easy to degrade the classification performance in the face of noise interference from noisy data. To improve the above problem, this paper proposes a double pseudo-inverse extreme learning machine (DPELM) based on Sparse Denoising AutoEncoder (SDAE) namely, SDAE-DPELM. The algorithm can directly determine the input weight and output weight of the network by using the pseudo-inverse method. As a result, the algorithm only requires a few hidden layer nodes to produce superior classification results when classifying data. And its combination with SDAE can effectively improve the classification performance and noise resistance. Extensive numerical experiments show that the algorithm has high classification accuracy and good robustness when dealing with high-dimensional noisy data and high-dimensional noiseless data. Furthermore, applying such an algorithm to Miao character recognition substantiates its excellent performance, which further illustrates the practicability of the algorithm.展开更多
In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonl...In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonlinear prolongation operator, which provides more accurate initial values for the fine grid level. An edge preserving denoising operator is constructed to remove noise and preserve image edges. The local smoothing operator reduces the influence of staircase effect. The experiment results show that the new method not only improves the computational efficiency but also ensures good recovery quality.展开更多
针对传统电缆故障定位法受波速和噪声影响导致的波头识别不准确及故障定位精度差问题,提出一种基于小波降噪、经验小波变换(empirical wavelet transform,EWT)和Teager能量算子(Teager energy operator,TEO)的电缆故障定位方法。首先,...针对传统电缆故障定位法受波速和噪声影响导致的波头识别不准确及故障定位精度差问题,提出一种基于小波降噪、经验小波变换(empirical wavelet transform,EWT)和Teager能量算子(Teager energy operator,TEO)的电缆故障定位方法。首先,利用改进的双端行波法消除波速对测距偏差的影响。然后,采用小波降噪法对采集的故障信号进行去噪。进一步应用EWT方法对降噪信号进行分解,提取降噪信号的高频分量。在此基础上,通过TEO能量曲线变化确定首端波头及近端反射波的到达时间,从而计算出电缆故障点到检测位置的距离。仿真结果表明,基于小波降噪和EWT-TEO的电缆故障定位方法对不同信噪比和故障电阻都具有良好的适应性和可靠性,能实现精确的电缆故障定位。展开更多
文摘In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.
基金Sponsored by the Natural Science Fundation of Jiangxi Province(Grant No.20114BAB211026 and 20122BAB201028)the Open Science Fund from Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology(Grant No.2010RGET11)
文摘The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothing filtering methods are proposed to solve the problem. These methods include adopting method of arithmetic moving average, center of gravity, least squares of polynomial, slide converter of discrete funcion convolution etc. The process of spectrum data is realized, and the results are assessed in H/FWHM( Peak High/Full Width at Half Maximum) and peak area based on the Matlab programming. The results indicate that different methods smoothed spectrum have respective superiority in different ergoregion, but the Gaussian function theory in discrete function convolution slide method is used to filter the complex y-spectrum on Embedded system nlatform, and the statistical fluctuation of y-snectrum filtered wall.
基金Supported by Project of National Natural Science Foundation of China(No.41004041)
文摘Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like transform that analyzes seismic data following variable slopes of seismic events. The local slope is the key of seismic data. An earlier work used traditional normal moveout(NMO) equation to construct velocity-dependent(VD) seislet transform, which only adapt to hyperbolic condition. In this work, we use shifted hyperbola NMO equation to obtain more accurate slopes in nonhyperbolic situation. Self-adaptive threshold method was used to remove random noise while preserving useful signal. The synthetic and field data tests demonstrate that this method is more suitable for noise attenuation.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2012AA8012011C)
文摘In order to improve the adaptiveness of TV/L2-based image denoising algorithm in differ- ent signal-to-noise ratio (SNR) environments, an iterative denoising method with automatic parame- ter selection is proposed. Based upon the close connection between optimization function of denois- ing problem and regularization parameter, an updating model is built to select the regularized param- eter. Both the parameter and the objective function are dynamically updated in alternating minimiza- tion iterations, consequently, it can make the algorithm work in different SNR environments. Mean- while, a strategy for choosing the initial regularization parameter is presented. Considering Morozov discrepancy principle, a convex function with respect to the regularization parameter is modeled. Via the optimization method, it is easy and fast to find the convergence value of parameter, which is suitable for the iterative image denoising algorithm. Comparing with several state-of-the-art algo- rithms, many experiments confirm that the denoising algorithm with the proposed parameter selec- tion is highly effective to evaluate peak signal-to-noise ratio (PSNR) and structural similarity
文摘Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. However, due to the traditional ELM shallow architecture, it requires a large number of hidden nodes when dealing with high-dimensional data sets to ensure its classification performance. The other aspect, it is easy to degrade the classification performance in the face of noise interference from noisy data. To improve the above problem, this paper proposes a double pseudo-inverse extreme learning machine (DPELM) based on Sparse Denoising AutoEncoder (SDAE) namely, SDAE-DPELM. The algorithm can directly determine the input weight and output weight of the network by using the pseudo-inverse method. As a result, the algorithm only requires a few hidden layer nodes to produce superior classification results when classifying data. And its combination with SDAE can effectively improve the classification performance and noise resistance. Extensive numerical experiments show that the algorithm has high classification accuracy and good robustness when dealing with high-dimensional noisy data and high-dimensional noiseless data. Furthermore, applying such an algorithm to Miao character recognition substantiates its excellent performance, which further illustrates the practicability of the algorithm.
文摘In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonlinear prolongation operator, which provides more accurate initial values for the fine grid level. An edge preserving denoising operator is constructed to remove noise and preserve image edges. The local smoothing operator reduces the influence of staircase effect. The experiment results show that the new method not only improves the computational efficiency but also ensures good recovery quality.
文摘针对传统电缆故障定位法受波速和噪声影响导致的波头识别不准确及故障定位精度差问题,提出一种基于小波降噪、经验小波变换(empirical wavelet transform,EWT)和Teager能量算子(Teager energy operator,TEO)的电缆故障定位方法。首先,利用改进的双端行波法消除波速对测距偏差的影响。然后,采用小波降噪法对采集的故障信号进行去噪。进一步应用EWT方法对降噪信号进行分解,提取降噪信号的高频分量。在此基础上,通过TEO能量曲线变化确定首端波头及近端反射波的到达时间,从而计算出电缆故障点到检测位置的距离。仿真结果表明,基于小波降噪和EWT-TEO的电缆故障定位方法对不同信噪比和故障电阻都具有良好的适应性和可靠性,能实现精确的电缆故障定位。