In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. Ac...In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. According to the ratio of two time scales available, the model can be classified into three categories, i.e., instant softening model, delay softening model, and coupling softening model. Corresponding evolution functions are specified to represent these kinds of softening processes and then applied to simulate landslide of homogeneous slopes triggered by rainfall, therefrom, useful conclusions can be drawn in the end.展开更多
The behavior of soil-structure interface plays a major role in the definition of soil-structure interaction. In this paper a bi-potential surface elasto-plastic model for soil-structure interface is proposed in order ...The behavior of soil-structure interface plays a major role in the definition of soil-structure interaction. In this paper a bi-potential surface elasto-plastic model for soil-structure interface is proposed in order to describe the interface deformation behavior,including strain softening and normal dilatancy. The model is formulated in the framework of generalized potential theory,in which the soil-structure interface problem is regard as a two-dimensional mathematical problem in stress field,and plastic state equations are used to replace the traditional field surface. The relation curves of shear stress and tangential strain are fitted by a piecewise function composed by hyperbolic functions and hyperbolic secant functions,while the relation curves of normal strain and tangential strain are fitted by another piecewise function composed by quadratic functions and hyperbolic secant functions. The approach proposed has the advantage of deriving an elastoplastic constitutive matrix without postulating the plastic potential functions and yield surface. Moreover,the mathematical principle is clear,and the entire model parameters can be identified by experimental tests. Finally,the predictions of the model have been compared with experimental results obtained from simple shear tests under normal stresses,and results show the model is reasonable and practical.展开更多
The present paper is aimed to simulate progression of damage,hardening and softening response in brittle materials such as concrete or rock in general state of stress.Similar shape of surfaces for yield,failure and da...The present paper is aimed to simulate progression of damage,hardening and softening response in brittle materials such as concrete or rock in general state of stress.Similar shape of surfaces for yield,failure and damage progressing are available,and softening strain is treated as plasticity.Then,the proposed model is applied to solving several boundary value problems.展开更多
The paper describes an energy-based constitutive model for sand, which is modified based on the modified plastic strain energy approach, represented by a unique relationship between the modified plastic strain energy ...The paper describes an energy-based constitutive model for sand, which is modified based on the modified plastic strain energy approach, represented by a unique relationship between the modified plastic strain energy and a stress parameter, independent of stress history. The modified plastic strain energy approach was developed based on results from a series of drained plastic strain compression tests along various stress paths on saturated dense Toyoura sand with accurate stress and strain measurements. The proposed model is coupled with an isotropically work-hardening and softening, non-associtated, elasto-plastic material description. The constitutive model concerns the inherent and stress system-induced cross-anisotropic elastic deformation properties of sand. It is capable of simulating the deformation characteristics of stress history and stress path, the effects of pressure level, anisotropic strength and void ratio, and the strain localization.展开更多
An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account...An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.展开更多
The coal mining process is afected by various water sources such as groundwater and coal seam water injection.Understanding the dynamic mechanical parameters of water-immersed coal is helpful for coalmine safe product...The coal mining process is afected by various water sources such as groundwater and coal seam water injection.Understanding the dynamic mechanical parameters of water-immersed coal is helpful for coalmine safe production.The impact compression tests were performed on coal with diferent moisture contents by using theϕ50 mm Split Hopkinson Pressure Bar(SHPB)experimental system,and the dynamic characteristics and energy loss laws of water-immersed coal with diferent compositions and water contents were analyzed.Through analysis and discussion,it is found that:(1)When the moisture content of the coal sample is 0%,30%,60%,the stress,strain rate and energy frst increase and then decrease with time.(2)When the moisture content of the coal sample increases from 30%to 60%,the stress“plateau”of the coal sample becomes more obvious,resulting in an increase in the compressive stress stage and a decrease in the expansion stress stage.(3)The increase of moisture content of the coal sample will afect its impact deformation and failure mode.When the moisture content is 60%,the incident rod end and the transmission rod end of the coal sample will have obvious compression failure,and the middle part of the coal sample will also experience expansion and deformation.(4)The coal composition ratio suitable for the coal immersion softening impact experiment is optimized.展开更多
The dynamic softening behaviors during hot deformation of 7075 aluminum alloy were studied by isothermal hot compression tested at temperatures of 250, 300, 350, 400 and 450 ℃ and strain rates of 0.01, 0.1, 1 and 10 ...The dynamic softening behaviors during hot deformation of 7075 aluminum alloy were studied by isothermal hot compression tested at temperatures of 250, 300, 350, 400 and 450 ℃ and strain rates of 0.01, 0.1, 1 and 10 s-1 on Gleeble1500. The results show that the temperature changes have a significant effect on the dynamic softening rate. It is indicated that the considerable dynamic softening rate associated with dynamic recrystallization leads flow stress value decreasing gradually. A group of coefficients needed by the phenomenological constitutive model containing a softening ratio item were calculated by the multiple linear regression method. The optical microstructures show that the grains of billets compressed become more and more refined with strain rate increasing as well as the degree of dynamic softening and work-hardening higher. The phenomenological constitutive description of 7075 aluminum alloy can accurately describe the relationships among flow stress, temperature, strain rate, strain and dynamic softening, and offer the basic model for plastic forming process simulation.展开更多
A set of analytical equations for the variation of the axial force along depth and the pile-top load-settle-ment curve were established, using tri-linear softening model to pile-side soil and bilinear hardening model ...A set of analytical equations for the variation of the axial force along depth and the pile-top load-settle-ment curve were established, using tri-linear softening model to pile-side soil and bilinear hardening model to pile-end soil . Influences of the pile-side and pile-end soil behavior on the load-settlement curve were discussed, indica-ting that the lowering reason for the variation step degree of the axial force along depth is the softening of the pile-side soil to result in the side friction lowering when the pile-top load is increased. To verify the reliability of thismethod, the parameters used in calculation are obtained from the test in Zhuzhou area. The obtained results are thencompared with the tested results. Contrast shows that the calculated results and the tested values are very close,which illustrates that the proposed method is reliable.展开更多
The flow stress behaviors of AZ61 alloy has been investigated at temperature rangefrom 523 to 673K with the strain rates of 0.001-1s^(-1). It is found that the averageactivation energy, strain rate sensitive exponent ...The flow stress behaviors of AZ61 alloy has been investigated at temperature rangefrom 523 to 673K with the strain rates of 0.001-1s^(-1). It is found that the averageactivation energy, strain rate sensitive exponent and stress exponent are different atvarious deformation conditions changing from 143.6 to 176.3kJ/mol, 0.125 to 0.167and 6 to 8 respectively. A flow stress model for AZ61 alloy is derived by analyzingthe stress data based on hot compression test. It is demonstrated that the flow stressmodel including strain hardening exponent and strain softening exponent is suitableto predicate the flow stress. The prediction of the flow stress of AZ61 alloy has shownto be good agreement with the test data. The maximum differences of the peak stressescalculated by the model and obtained by experiment is less than 8%.展开更多
This paper considers the effects of damage softening and hydraulic softening on fault zone media and provides a nonlinear mechanics model of fault earthquake. Taking far field displacement,stiffness ratio and permeati...This paper considers the effects of damage softening and hydraulic softening on fault zone media and provides a nonlinear mechanics model of fault earthquake. Taking far field displacement,stiffness ratio and permeation parameter as control variables, we obtain a swallowtail type catastrophic model of earthquakes. Then, by this model, we study the effects of permeation, far field displacement and stiffness ratio on the preparation and the occurrence of earthquakes.展开更多
By means of CUSP model of catastrophe theory. this paper has studied thephysics process of rockburst occured on circular chamber. The present paper has nolonly described the instability process of rockburst more deepl...By means of CUSP model of catastrophe theory. this paper has studied thephysics process of rockburst occured on circular chamber. The present paper has nolonly described the instability process of rockburst more deeply. but also got the crilicaldepth of plastic softening area of chamber that is valuable in the controlling engineering of rockburst. the chamber displacement jump and energy liberation have been derived. the influence of rock parameters on the rockburst has been discussed .展开更多
The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS...The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results;besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen.展开更多
Based on simplex algorithm of optimal design, the multicomponent mixture regression model was used to investigate physical properties of submerged arc welding flux. The effect of complex interaction of seven component...Based on simplex algorithm of optimal design, the multicomponent mixture regression model was used to investigate physical properties of submerged arc welding flux. The effect of complex interaction of seven components in agglomerated flux on softening temperature was analyzed. The results indicate that the interaction of MgO-TiO2-CaCOa-AI20a increases the softening temperature of flux, but the additions of CaF2 and ZrO2 can decrease the softening temperature.展开更多
According to the damage mechanism of concrete material during the uniaxial compressive failure process,this paper further establishes the statistical damage constitutive model of concrete subjected to uniaxial compres...According to the damage mechanism of concrete material during the uniaxial compressive failure process,this paper further establishes the statistical damage constitutive model of concrete subjected to uniaxial compressive stress based on the statistical damage model under uniaxial tension. The damage evolution law in the direction subjected to pressure is confirmed by the tensile damage evolution process of lateral deformation due to the Poisson effect,and then the compressive stress-strain relationship is defined. The peak nominal stress state and the critical state occurring in the macro longitudinal distributed splitting cracks are distinguished. The whole loading process can be divided into the even damage phase and the local breakage phase. The concrete specimen is divided into the failure process zone and the resting unloading zone. The size effects during the local breakage phase under the uniaxial monotonic compressive process and the hysteretic phenomenon under the cyclic compressive loading process are analyzed. Finally,the comparison between theoretical results and experimental results preliminarily verifies the rationality and feasibility of understanding the failure mechanism of concrete through the statistical damage constitutional law.展开更多
The high-strength low-alloy( HSLA ) steel heat-affected zone (HAZ)softening was predicted using a grey model. HSLA steel DILLIMAX690E, NK-HITEN61OU2 and BHW35 were taken as examples in the research on ultra-narrow...The high-strength low-alloy( HSLA ) steel heat-affected zone (HAZ)softening was predicted using a grey model. HSLA steel DILLIMAX690E, NK-HITEN61OU2 and BHW35 were taken as examples in the research on ultra-narrow gap automatic welding technology. Test results turned out to be that the errors between the values calculated by the Grey Model (GM) ( 1,1 ) model and their actual value were less than 2%, indicating that the grey prediction method could accurately reflect the actual situation of the high-strength low-alloy steel heat-affected zone softening. This method will play a crucial role in guiding the applications of HSLA steel welded structures in the future.展开更多
It has been long time established that application of damage delocalization method to softening constitutive models yields numerical results that are independent of the size of the finite element. However, the predict...It has been long time established that application of damage delocalization method to softening constitutive models yields numerical results that are independent of the size of the finite element. However, the prediction of real-world large and small scale problems using the delocalization method remains in its infancy. One of the drawbacks encountered is that the predicted load versus displacement curve suddenly drops, as a result of excessive smoothing of the damage. The present paper studies this unwanted effect for a delocalized plasticity/damage model for metallic materials. We use some theoretical arguments to explain the failure of the delocalized model considered, following which a simple remedy is proposed to deal with it. Future works involve the numerical implementation of the new version reproduce real-world problems.展开更多
A multi-block model and a corresponding computer program have been developed which predict the kinematics of landslides.Furthermore,a unique event for studying different models simulating the triggering and movement o...A multi-block model and a corresponding computer program have been developed which predict the kinematics of landslides.Furthermore,a unique event for studying different models simulating the triggering and movement of landslides is the 2008Wenchuan earthquake in the mountainous region in Sichuan Province of China,which caused a large number of rapid landslides.The purpose of the paper is two-fold:(a)to propose and incorporate into the multi-block model constitutive relations predicting soil response along slip surfaces,and(b)to apply the multi-block model with the constitutive relations at landslides triggered by the Wenchuan earthquake.The proposed constitutive equations predict the shape of the shear stress-displacement response measured in ring shear tests.In the application,four landslides caused by the Wenchuan earthquake were considered.Only in one of these landslides the shear resistance-displacement response along the slip surface has been measured in laboratory tests.At this landslide,the triggering and movement of the landslide was predicted.In the other landslides,back analyses were performed and it was observed that the multi-block model predicted reasonably well the final configuration of all slides.In addition,as the measured and back-estimated total friction angle of all landslides was less than 180,and the materials along the slip surface were sandy,it is inferred that some,or all of the slip surface during these slides was sheared in an undrained manner and excess pore pressures generated during sliding played a key role in the triggering and movement of these landslides.Concluding,the paper(A)proposed and validated a multi-block constitutive model which can be applied to predict the triggering and movement of earthquake-induced slides and(B)by analyzing four landslides of the 2008 Wenchuan earthquake,it concludes that some,or all of the slip surface during these slides,was sheared in an undrained manner and excess pore pressures generated during sliding played a key role in the triggering and movement of these landslides.展开更多
基金supported by the National Natural Science Funds of China (10932012)
文摘In this study, strength softening models are developed for exploring rainfall-induced landslide mechanism based on Mohr Coulomb strength theory with both saturation degree and temporal evolution into consideration. According to the ratio of two time scales available, the model can be classified into three categories, i.e., instant softening model, delay softening model, and coupling softening model. Corresponding evolution functions are specified to represent these kinds of softening processes and then applied to simulate landslide of homogeneous slopes triggered by rainfall, therefrom, useful conclusions can be drawn in the end.
基金supported by the National Natural Science Foundation of ChinaYalona River Hydropower Development of Ertan Hydropower Development Company (No.50639050)
文摘The behavior of soil-structure interface plays a major role in the definition of soil-structure interaction. In this paper a bi-potential surface elasto-plastic model for soil-structure interface is proposed in order to describe the interface deformation behavior,including strain softening and normal dilatancy. The model is formulated in the framework of generalized potential theory,in which the soil-structure interface problem is regard as a two-dimensional mathematical problem in stress field,and plastic state equations are used to replace the traditional field surface. The relation curves of shear stress and tangential strain are fitted by a piecewise function composed by hyperbolic functions and hyperbolic secant functions,while the relation curves of normal strain and tangential strain are fitted by another piecewise function composed by quadratic functions and hyperbolic secant functions. The approach proposed has the advantage of deriving an elastoplastic constitutive matrix without postulating the plastic potential functions and yield surface. Moreover,the mathematical principle is clear,and the entire model parameters can be identified by experimental tests. Finally,the predictions of the model have been compared with experimental results obtained from simple shear tests under normal stresses,and results show the model is reasonable and practical.
文摘The present paper is aimed to simulate progression of damage,hardening and softening response in brittle materials such as concrete or rock in general state of stress.Similar shape of surfaces for yield,failure and damage progressing are available,and softening strain is treated as plasticity.Then,the proposed model is applied to solving several boundary value problems.
基金The project supported by the Association of International Education of Japan
文摘The paper describes an energy-based constitutive model for sand, which is modified based on the modified plastic strain energy approach, represented by a unique relationship between the modified plastic strain energy and a stress parameter, independent of stress history. The modified plastic strain energy approach was developed based on results from a series of drained plastic strain compression tests along various stress paths on saturated dense Toyoura sand with accurate stress and strain measurements. The proposed model is coupled with an isotropically work-hardening and softening, non-associtated, elasto-plastic material description. The constitutive model concerns the inherent and stress system-induced cross-anisotropic elastic deformation properties of sand. It is capable of simulating the deformation characteristics of stress history and stress path, the effects of pressure level, anisotropic strength and void ratio, and the strain localization.
基金Project supported by the National Postdoctoral Science Foundation of China (No.20060400317)the Education Foundation of Zhejiang Province (No.20061459)the Young Foundation of Zhejiang Province (No.0202303005),China
文摘An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.
基金This research was funded by the National Natural Science Foundation of China(51974176,51934004)ShandongProvince Natural Science Foundation of Outstanding Youth Fund(ZR2020JQ22)+1 种基金Shandong Province Colleges and Universities Youth Innovation and Technology Support Program(2019KJH006)Taishan Scholars Project(TS20190935).
文摘The coal mining process is afected by various water sources such as groundwater and coal seam water injection.Understanding the dynamic mechanical parameters of water-immersed coal is helpful for coalmine safe production.The impact compression tests were performed on coal with diferent moisture contents by using theϕ50 mm Split Hopkinson Pressure Bar(SHPB)experimental system,and the dynamic characteristics and energy loss laws of water-immersed coal with diferent compositions and water contents were analyzed.Through analysis and discussion,it is found that:(1)When the moisture content of the coal sample is 0%,30%,60%,the stress,strain rate and energy frst increase and then decrease with time.(2)When the moisture content of the coal sample increases from 30%to 60%,the stress“plateau”of the coal sample becomes more obvious,resulting in an increase in the compressive stress stage and a decrease in the expansion stress stage.(3)The increase of moisture content of the coal sample will afect its impact deformation and failure mode.When the moisture content is 60%,the incident rod end and the transmission rod end of the coal sample will have obvious compression failure,and the middle part of the coal sample will also experience expansion and deformation.(4)The coal composition ratio suitable for the coal immersion softening impact experiment is optimized.
基金Projects(10872221,10272120) supported by National Natural Science Foundation of China
文摘The dynamic softening behaviors during hot deformation of 7075 aluminum alloy were studied by isothermal hot compression tested at temperatures of 250, 300, 350, 400 and 450 ℃ and strain rates of 0.01, 0.1, 1 and 10 s-1 on Gleeble1500. The results show that the temperature changes have a significant effect on the dynamic softening rate. It is indicated that the considerable dynamic softening rate associated with dynamic recrystallization leads flow stress value decreasing gradually. A group of coefficients needed by the phenomenological constitutive model containing a softening ratio item were calculated by the multiple linear regression method. The optical microstructures show that the grains of billets compressed become more and more refined with strain rate increasing as well as the degree of dynamic softening and work-hardening higher. The phenomenological constitutive description of 7075 aluminum alloy can accurately describe the relationships among flow stress, temperature, strain rate, strain and dynamic softening, and offer the basic model for plastic forming process simulation.
基金Project (01B028) supported by Department of Education of Hunan Province
文摘A set of analytical equations for the variation of the axial force along depth and the pile-top load-settle-ment curve were established, using tri-linear softening model to pile-side soil and bilinear hardening model to pile-end soil . Influences of the pile-side and pile-end soil behavior on the load-settlement curve were discussed, indica-ting that the lowering reason for the variation step degree of the axial force along depth is the softening of the pile-side soil to result in the side friction lowering when the pile-top load is increased. To verify the reliability of thismethod, the parameters used in calculation are obtained from the test in Zhuzhou area. The obtained results are thencompared with the tested results. Contrast shows that the calculated results and the tested values are very close,which illustrates that the proposed method is reliable.
文摘The flow stress behaviors of AZ61 alloy has been investigated at temperature rangefrom 523 to 673K with the strain rates of 0.001-1s^(-1). It is found that the averageactivation energy, strain rate sensitive exponent and stress exponent are different atvarious deformation conditions changing from 143.6 to 176.3kJ/mol, 0.125 to 0.167and 6 to 8 respectively. A flow stress model for AZ61 alloy is derived by analyzingthe stress data based on hot compression test. It is demonstrated that the flow stressmodel including strain hardening exponent and strain softening exponent is suitableto predicate the flow stress. The prediction of the flow stress of AZ61 alloy has shownto be good agreement with the test data. The maximum differences of the peak stressescalculated by the model and obtained by experiment is less than 8%.
文摘This paper considers the effects of damage softening and hydraulic softening on fault zone media and provides a nonlinear mechanics model of fault earthquake. Taking far field displacement,stiffness ratio and permeation parameter as control variables, we obtain a swallowtail type catastrophic model of earthquakes. Then, by this model, we study the effects of permeation, far field displacement and stiffness ratio on the preparation and the occurrence of earthquakes.
文摘By means of CUSP model of catastrophe theory. this paper has studied thephysics process of rockburst occured on circular chamber. The present paper has nolonly described the instability process of rockburst more deeply. but also got the crilicaldepth of plastic softening area of chamber that is valuable in the controlling engineering of rockburst. the chamber displacement jump and energy liberation have been derived. the influence of rock parameters on the rockburst has been discussed .
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51079018 and 11202109)
文摘The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results;besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen.
文摘Based on simplex algorithm of optimal design, the multicomponent mixture regression model was used to investigate physical properties of submerged arc welding flux. The effect of complex interaction of seven components in agglomerated flux on softening temperature was analyzed. The results indicate that the interaction of MgO-TiO2-CaCOa-AI20a increases the softening temperature of flux, but the additions of CaF2 and ZrO2 can decrease the softening temperature.
基金Sponsored by the Program for New Century Excellent Talents in University (NCET-05-0413)the National Natural Science Foundation of China(Grant No.90510018 and 50679006)the China Postdoctoral Science Foundation(Grant No.20090461166)
文摘According to the damage mechanism of concrete material during the uniaxial compressive failure process,this paper further establishes the statistical damage constitutive model of concrete subjected to uniaxial compressive stress based on the statistical damage model under uniaxial tension. The damage evolution law in the direction subjected to pressure is confirmed by the tensile damage evolution process of lateral deformation due to the Poisson effect,and then the compressive stress-strain relationship is defined. The peak nominal stress state and the critical state occurring in the macro longitudinal distributed splitting cracks are distinguished. The whole loading process can be divided into the even damage phase and the local breakage phase. The concrete specimen is divided into the failure process zone and the resting unloading zone. The size effects during the local breakage phase under the uniaxial monotonic compressive process and the hysteretic phenomenon under the cyclic compressive loading process are analyzed. Finally,the comparison between theoretical results and experimental results preliminarily verifies the rationality and feasibility of understanding the failure mechanism of concrete through the statistical damage constitutional law.
文摘The high-strength low-alloy( HSLA ) steel heat-affected zone (HAZ)softening was predicted using a grey model. HSLA steel DILLIMAX690E, NK-HITEN61OU2 and BHW35 were taken as examples in the research on ultra-narrow gap automatic welding technology. Test results turned out to be that the errors between the values calculated by the Grey Model (GM) ( 1,1 ) model and their actual value were less than 2%, indicating that the grey prediction method could accurately reflect the actual situation of the high-strength low-alloy steel heat-affected zone softening. This method will play a crucial role in guiding the applications of HSLA steel welded structures in the future.
基金supported by the U.S.Department of Transportation,Office of the Secretary(DTOS59-08-G-00103)
文摘It has been long time established that application of damage delocalization method to softening constitutive models yields numerical results that are independent of the size of the finite element. However, the prediction of real-world large and small scale problems using the delocalization method remains in its infancy. One of the drawbacks encountered is that the predicted load versus displacement curve suddenly drops, as a result of excessive smoothing of the damage. The present paper studies this unwanted effect for a delocalized plasticity/damage model for metallic materials. We use some theoretical arguments to explain the failure of the delocalized model considered, following which a simple remedy is proposed to deal with it. Future works involve the numerical implementation of the new version reproduce real-world problems.
基金The National Key R&D Program of China (2017YFC1502903) Sichuan International Cooperation and Exchange for Science and Technology (2016HH0079)+1 种基金 "Novel methodologies for the assessment of risk of ground displacement" under ESPA 2007-2013 of Greece under
文摘A multi-block model and a corresponding computer program have been developed which predict the kinematics of landslides.Furthermore,a unique event for studying different models simulating the triggering and movement of landslides is the 2008Wenchuan earthquake in the mountainous region in Sichuan Province of China,which caused a large number of rapid landslides.The purpose of the paper is two-fold:(a)to propose and incorporate into the multi-block model constitutive relations predicting soil response along slip surfaces,and(b)to apply the multi-block model with the constitutive relations at landslides triggered by the Wenchuan earthquake.The proposed constitutive equations predict the shape of the shear stress-displacement response measured in ring shear tests.In the application,four landslides caused by the Wenchuan earthquake were considered.Only in one of these landslides the shear resistance-displacement response along the slip surface has been measured in laboratory tests.At this landslide,the triggering and movement of the landslide was predicted.In the other landslides,back analyses were performed and it was observed that the multi-block model predicted reasonably well the final configuration of all slides.In addition,as the measured and back-estimated total friction angle of all landslides was less than 180,and the materials along the slip surface were sandy,it is inferred that some,or all of the slip surface during these slides was sheared in an undrained manner and excess pore pressures generated during sliding played a key role in the triggering and movement of these landslides.Concluding,the paper(A)proposed and validated a multi-block constitutive model which can be applied to predict the triggering and movement of earthquake-induced slides and(B)by analyzing four landslides of the 2008 Wenchuan earthquake,it concludes that some,or all of the slip surface during these slides,was sheared in an undrained manner and excess pore pressures generated during sliding played a key role in the triggering and movement of these landslides.