The research used industrial by-products original phosphogypsum(PG)as the main raw material,slag(SG)and Portland cement(PC)as auxiliary materials,and the optimal additive amount was determined according to the compres...The research used industrial by-products original phosphogypsum(PG)as the main raw material,slag(SG)and Portland cement(PC)as auxiliary materials,and the optimal additive amount was determined according to the compressive strength value of the sample.Comprehensively evaluate the water resistance and volume stability of the samples,and determine the best formula for new roadbed stabilized materials.The results showed that when the weight ratio of PG,slag and cement was OPG:SG:PC=6:3:1,and mixed with 5%micro silica fume(MSF)and 3‰hydroxypropyl methyl cellulose(HPMC),the sample’s comprehensive performance was the best,specifically,the sample’s compressive strength in 60 days reached 28.8 MPa,the softening coefficient reached 0.9,and the expansion rate was stable at about−0.2%.In addition,the mechanism of action of enhancers MSF and HPMC was analyzed according to use Vicat device,X-ray diffractometer and scanning electron microscope.The best formula SP3GH3 has the best curing effect on soil.The 28-day unconfined compressive strength(UCS)of the sample reached 2.4 MPa,the expansion rate was less than 0.09%,and the water stability coefficient was above 0.79,which was higher than that of the samples cured by traditional cement and lime during the same period.展开更多
As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the charact...As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the characteristics of reinforced soil after immersion.In this study,water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported.Several factors,including polymer content(1%,2%,3%and 4%by weight of dry sand),immersion time(6,12,24 and 48 h),dry density(1.40,1.45,1.50,1.55 and 1.60 g/cm^(3),)and fiber content(0.2%,0.4%,0.6%and 0.8%by weight of dry sand)which may influence the strength characteristics of reinforced sand after immersion were analyzed.The microstructure of reinforced sand was analyzed with nuclear magnetic resonance(NMR)and scanning electron microscope(SEM).Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time;the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content.Fiber plays an active role in reducing water-induced loss of strength at 0.6%content.展开更多
A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uni...A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10^(-5), 10^(-4) and 10^(-3)/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa, respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant. Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level, especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric 'X' shape with various strain, and the average unloading modulus is larger than the average loading modulus.展开更多
There are a large number of historic buildings which were mainly made of blue-brick masonry in today’s world.However,for the natural and man-made reasons,these historic buildings have been damaged in different degree...There are a large number of historic buildings which were mainly made of blue-brick masonry in today’s world.However,for the natural and man-made reasons,these historic buildings have been damaged in different degrees.In order to protect historic buildings more scientifically and learn about the preservation state of existing historic buildings,it is necessary to ascertain the material properties of blue brick in historic buildings.The article takes the blue bricks of historical buildings in Kaifeng area of the Central Plains as an example to study.Through the analysis of physical properties,X-ray fluorescence spectroscopy,X-ray diffraction and scanning electron microscopy of blue brick specimens,the physical properties such as the apparent density,moisture content,porosity,and material structure composition are understood.The results show that the apparent density of blue brick is 1.64 g/cm^(3),the moisture content is 10.23%,the 24 h atmospheric water absorption is 17.86%,and the porosity is 20.99%.The smaller the apparent density is,the larger the porosity is,and the water absorption performance is better.From the microscopic point of view,bonding ability between blue brick mineral particles is relatively weak.The pores between skeletons are large and the pore structure is obvious.From the perspective of material phase,the elements of blue brick are mainly O,Si,Al,Fe,and the composition of blue brick is mainly composed of quartz and feldspar.The softening coefficient of blue brick is 0.80,and the deformation and stability of the structure should be paid special attention in the rainy season or wet environment.Through the frost test,there are salt substances in the internal pores of the brick,and the surface of the blue brick is eroded and pulverized.In this paper,the experimental process and analysis methods for testing the material properties of blue brick can provide reference for the research on the material properties of the same kind of blue-brick masonry in historic buildings and masonry relics.The relevant material property parameters obtained in this paper can provide guidance for making protection schemes and scientific repairs for historic buildings in Central China,enrich the evaluation criteria for maintaining and reinforcing historic buildings,and provide theoretical support for studying the damage and health detection technology related to historic buildings.展开更多
基金This work was supported by the Jiangsu Provincial Science and Technology Department’s Social Development-Major Science and Technology Demonstration Project(Grant No.BE2018697)the Jiangsu Provincial Science and Technology Department Social Development Project(Grant No.BE2017704)the Scientific Research Project of the Suqian Municipal Transportation Bureau.
文摘The research used industrial by-products original phosphogypsum(PG)as the main raw material,slag(SG)and Portland cement(PC)as auxiliary materials,and the optimal additive amount was determined according to the compressive strength value of the sample.Comprehensively evaluate the water resistance and volume stability of the samples,and determine the best formula for new roadbed stabilized materials.The results showed that when the weight ratio of PG,slag and cement was OPG:SG:PC=6:3:1,and mixed with 5%micro silica fume(MSF)and 3‰hydroxypropyl methyl cellulose(HPMC),the sample’s comprehensive performance was the best,specifically,the sample’s compressive strength in 60 days reached 28.8 MPa,the softening coefficient reached 0.9,and the expansion rate was stable at about−0.2%.In addition,the mechanism of action of enhancers MSF and HPMC was analyzed according to use Vicat device,X-ray diffractometer and scanning electron microscope.The best formula SP3GH3 has the best curing effect on soil.The 28-day unconfined compressive strength(UCS)of the sample reached 2.4 MPa,the expansion rate was less than 0.09%,and the water stability coefficient was above 0.79,which was higher than that of the samples cured by traditional cement and lime during the same period.
基金Project(41472241)supported by the National Natural Science Foundation of ChinaProject(KJXM2019028)supported by the Natural Resources Science and Technology Project of Jiangsu Province,ChinaProject(2019B17314)supported by the Fundamental Research Funds for the Central Universities,China。
文摘As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the characteristics of reinforced soil after immersion.In this study,water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported.Several factors,including polymer content(1%,2%,3%and 4%by weight of dry sand),immersion time(6,12,24 and 48 h),dry density(1.40,1.45,1.50,1.55 and 1.60 g/cm^(3),)and fiber content(0.2%,0.4%,0.6%and 0.8%by weight of dry sand)which may influence the strength characteristics of reinforced sand after immersion were analyzed.The microstructure of reinforced sand was analyzed with nuclear magnetic resonance(NMR)and scanning electron microscope(SEM).Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time;the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content.Fiber plays an active role in reducing water-induced loss of strength at 0.6%content.
基金Project(Z110510) supported by Opening Research Foundation of the Chinese Academy of Sciences Key Laboratory of Rock and Soil MechanicsProject(20060390473) supported by China Postdoctoral Science FoudationProject(40172084) supported by the National Natural Science Foundation of China
文摘A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10^(-5), 10^(-4) and 10^(-3)/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa, respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant. Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level, especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric 'X' shape with various strain, and the average unloading modulus is larger than the average loading modulus.
基金The authors would like to express heartfelt gratitude to the financial support by the Science Technology of the Ministry of Housing and Urban-Rural Development(No.2018-K9-065)China Postdoctoral Science Foundation Funded Project(No.2018M632805)+1 种基金Key Scientific and Technological Project of Henan Province(No.212102310932)Key Scientific and Technological Project of Kaifeng City(No.2001010).
文摘There are a large number of historic buildings which were mainly made of blue-brick masonry in today’s world.However,for the natural and man-made reasons,these historic buildings have been damaged in different degrees.In order to protect historic buildings more scientifically and learn about the preservation state of existing historic buildings,it is necessary to ascertain the material properties of blue brick in historic buildings.The article takes the blue bricks of historical buildings in Kaifeng area of the Central Plains as an example to study.Through the analysis of physical properties,X-ray fluorescence spectroscopy,X-ray diffraction and scanning electron microscopy of blue brick specimens,the physical properties such as the apparent density,moisture content,porosity,and material structure composition are understood.The results show that the apparent density of blue brick is 1.64 g/cm^(3),the moisture content is 10.23%,the 24 h atmospheric water absorption is 17.86%,and the porosity is 20.99%.The smaller the apparent density is,the larger the porosity is,and the water absorption performance is better.From the microscopic point of view,bonding ability between blue brick mineral particles is relatively weak.The pores between skeletons are large and the pore structure is obvious.From the perspective of material phase,the elements of blue brick are mainly O,Si,Al,Fe,and the composition of blue brick is mainly composed of quartz and feldspar.The softening coefficient of blue brick is 0.80,and the deformation and stability of the structure should be paid special attention in the rainy season or wet environment.Through the frost test,there are salt substances in the internal pores of the brick,and the surface of the blue brick is eroded and pulverized.In this paper,the experimental process and analysis methods for testing the material properties of blue brick can provide reference for the research on the material properties of the same kind of blue-brick masonry in historic buildings and masonry relics.The relevant material property parameters obtained in this paper can provide guidance for making protection schemes and scientific repairs for historic buildings in Central China,enrich the evaluation criteria for maintaining and reinforcing historic buildings,and provide theoretical support for studying the damage and health detection technology related to historic buildings.