期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Adaptive Deep Learning Model for Software Bug Detection and Classification
1
作者 S.Sivapurnima D.Manjula 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1233-1248,共16页
Software is unavoidable in software development and maintenance.In literature,many methods are discussed which fails to achieve efficient software bug detection and classification.In this paper,efficient Adaptive Deep... Software is unavoidable in software development and maintenance.In literature,many methods are discussed which fails to achieve efficient software bug detection and classification.In this paper,efficient Adaptive Deep Learning Model(ADLM)is developed for automatic duplicate bug report detection and classification process.The proposed ADLM is a combination of Conditional Random Fields decoding with Long Short-Term Memory(CRF-LSTM)and Dingo Optimizer(DO).In the CRF,the DO can be consumed to choose the efficient weight value in network.The proposed automatic bug report detection is proceeding with three stages like pre-processing,feature extraction in addition bug detection with classification.Initially,the bug report input dataset is gathered from the online source system.In the pre-processing phase,the unwanted information from the input data are removed by using cleaning text,convert data types and null value replacement.The pre-processed data is sent into the feature extraction phase.In the feature extraction phase,the four types of feature extraction method are utilized such as contextual,categorical,temporal and textual.Finally,the features are sent to the proposed ADLM for automatic duplication bug report detection and classification.The proposed methodology is proceeding with two phases such as training and testing phases.Based on the working process,the bugs are detected and classified from the input data.The projected technique is assessed by analyzing performance metrics such as accuracy,precision,Recall,F_Measure and kappa. 展开更多
关键词 software bug detection classification PRE-PROCESSING feature extraction deep belief neural network long short-term memory
下载PDF
Edge detection and mathematic fitting for corneal surface with Matlab software 被引量:8
2
作者 Yue Di Mei-Yan Li +1 位作者 Tong Qiao Na Lu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第3期336-342,共7页
AIM:To select the optimal edge detection methods to identify the corneal surface,and compare three fitting curve equations with Matlab software. METHODS:Fifteen subjects were recruited. The corneal images from optic... AIM:To select the optimal edge detection methods to identify the corneal surface,and compare three fitting curve equations with Matlab software. METHODS:Fifteen subjects were recruited. The corneal images from optical coherence tomography(OCT)were imported into Matlab software. Five edge detection methods(Canny,Log,Prewitt,Roberts,Sobel)were used to identify the corneal surface. Then two manual identifying methods(ginput and getpts)were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve(y=Ax2+Bx+C),Polynomial curve [p(x)=p1xn+p2x(n-1)+....+pnx+pn+1] and Conic section(Ax2+Bxy+Cy2+Dx+Ey+F=0)were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally,the eccentricity(e)obtained by corneal topography and conic section were compared with paired t-test. RESULTS:Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis,eccentricity,circle center,etc. There were no significant differences between 'e' values by corneal topography and conic section(t=0.9143,P=0.3760 〉0.05).CONCLUSION:It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties. 展开更多
关键词 Matlab software edge detection curve fitting mathematic simulation optical coherence tomography corneal topography
下载PDF
NHPP-based software reliability model considering testing effort and multivariate fault detection rate 被引量:4
3
作者 Jie Zhang Yang Lu +1 位作者 Shu Yang Chong Xu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期260-270,共11页
In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogene... In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs. 展开更多
关键词 software reliability software reliability growth mo del(SRGM) testing effort fault detection rate(FDR).
下载PDF
Machine Learning-Based Efficient Discovery of Software Vulnerability for Internet of Things
4
作者 So-Eun Jeon Sun-Jin Lee Il-Gu Lee 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2407-2419,共13页
With the development of the 5th generation of mobile communi-cation(5G)networks and artificial intelligence(AI)technologies,the use of the Internet of Things(IoT)has expanded throughout industry.Although IoT networks ... With the development of the 5th generation of mobile communi-cation(5G)networks and artificial intelligence(AI)technologies,the use of the Internet of Things(IoT)has expanded throughout industry.Although IoT networks have improved industrial productivity and convenience,they are highly dependent on nonstandard protocol stacks and open-source-based,poorly validated software,resulting in several security vulnerabilities.How-ever,conventional AI-based software vulnerability discovery technologies cannot be applied to IoT because they require excessive memory and com-puting power.This study developed a technique for optimizing training data size to detect software vulnerabilities rapidly while maintaining learning accuracy.Experimental results using a software vulnerability classification dataset showed that different optimal data sizes did not affect the learning performance of the learning models.Moreover,the minimal data size required to train a model without performance degradation could be determined in advance.For example,the random forest model saved 85.18%of memory and improved latency by 97.82%while maintaining a learning accuracy similar to that achieved when using 100%of data,despite using only 1%. 展开更多
关键词 Lightweight devices machine learning deep learning software vulnerability detection common weakness enumeration
下载PDF
Software Defect Detection with ROCUS 被引量:11
5
作者 姜远 黎铭 周志华 《Journal of Computer Science & Technology》 SCIE EI CSCD 2011年第2期328-342,共15页
Software defect detection aims to automatically identify defective software modules for efficient software test in order to improve the quality of a software system. Although many machine learning methods have been su... Software defect detection aims to automatically identify defective software modules for efficient software test in order to improve the quality of a software system. Although many machine learning methods have been successfully applied to the task, most of them fail to consider two practical yet important issues in software defect detection. First, it is rather difficult to collect a large amount of labeled training data for learning a well-performing model; second, in a software system there are usually much fewer defective modules than defect-free modules, so learning would have to be conducted over an imbalanced data set. In this paper~ we address these two practical issues simultaneously by proposing a novel semi-supervised learning approach named Rocus. This method exploits the abundant unlabeled examples to improve the detection accuracy, as well as employs under-sampling to tackle the class-imbalance problem in the learning process. Experimental results of real-world software defect detection tasks show that Rocus is effective for software defect detection. Its performance is better than a semi-supervised learning method that ignores the class-imbalance nature of the task and a class-imbalance learning method that does not make effective use of unlabeled data. 展开更多
关键词 machine learning data mining semi-supervised learning class-imbalance software defect detection
原文传递
SwordDTA: A Dynamic Taint Analysis Tool for Software Vulnerability Detection 被引量:4
6
作者 CAI Jun ZOU Peng +1 位作者 MA Jinxin HE Jun 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第1期10-20,共11页
Software vulnerabilities are the root cause of various information security incidents while dynamic taint analysis is an emerging program analysis technique. In this paper, to maximize the use of the technique to dete... Software vulnerabilities are the root cause of various information security incidents while dynamic taint analysis is an emerging program analysis technique. In this paper, to maximize the use of the technique to detect software vulnerabilities, we present SwordDTA, a tool that can perform dynamic taint analysis for binaries. This tool is flexible and extensible that it can work with commodity software and hardware. It can be used to detect software vulnerabilities with vulnerability modeling and taint check. We evaluate it with a number of commonly used real-world applications. The experimental results show that SwordDTA is capable of detecting at least four kinds of softavare vulnerabilities including buffer overflow, integer overflow, division by zero and use-after-free, and is applicable for a wide range of software. 展开更多
关键词 information security software vulnerability detection dynamic taint analysis use-after-free
原文传递
A THREE-PARAMETER FAULT-DETECTION SOFTWARE RELIABILITY MODEL WITH THE UNCERTAINTY OF OPERATING ENVIRONMENTS 被引量:4
7
作者 Kwang Yoon Song In Hong Chang Hoang Pham 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2017年第1期121-132,共12页
As requirements for system quality have increased, the need for high system reliability is also increasing. Soflnvare systems are extremely important, in terms of enhanced reliability and stability, for providing high... As requirements for system quality have increased, the need for high system reliability is also increasing. Soflnvare systems are extremely important, in terms of enhanced reliability and stability, for providing high quality services to customers. However, because of the complexity of software systems, soft-ware development can be time-consuming and expensive. Many statistical models have been developed in the past years to estimate soflnvare reliability. In this paper, we propose a new three-parameter fault-detection software reliability model with the uncertainty of operating environments. The explicit mean value function solution for the proposed model is presented. Examples are presented to illustrate the goodness-of-fit of the proposed model and several existing non-homogeneous Poisson process (NHPP) models based on three sets of failure data collected from software applications. The results show that the proposed model fits significantly better than other existing NHPP models based on three criteria such as mean squared error (MSE), predictive ratio risk (PRR), and predictive power (PP). 展开更多
关键词 Nonhomogeneous Poisson process ratio risk predictive power fault detection software reliability mean squared error PREDICTIVE
原文传递
An Integration Testing Framework and Evaluation Metric for Vulnerability Mining Methods
8
作者 Jin Li Jinfu Chen +5 位作者 Minhuan Huang Minmin Zhou Wanggen Xie Zhifeng Zeng Shujie Chen Zufa Zhang 《China Communications》 SCIE CSCD 2018年第2期190-208,共19页
Software an important way to vulnerability mining is detect whether there are some loopholes existing in the software, and also is an important way to ensure the secu- rity of information systems. With the rapid devel... Software an important way to vulnerability mining is detect whether there are some loopholes existing in the software, and also is an important way to ensure the secu- rity of information systems. With the rapid development of information technology and software industry, most of the software has not been rigorously tested before being put in use, so that the hidden vulnerabilities in software will be exploited by the attackers. Therefore, it is of great significance for us to actively de- tect the software vulnerabilities in the security maintenance of information systems. In this paper, we firstly studied some of the common- ly used vulnerability detection methods and detection tools, and analyzed the advantages and disadvantages of each method in different scenarios. Secondly, we designed a set of eval- uation criteria for different mining methods in the loopholes evaluation. Thirdly, we also proposed and designed an integration testing framework, on which we can test the typical static analysis methods and dynamic mining methods as well as make the comparison, so that we can obtain an intuitive comparative analysis for the experimental results. Final- ly, we reported the experimental analysis to verify the feasibility and effectiveness of the proposed evaluation method and the testingframework, with the results showing that the final test results will serve as a form of guid- ance to aid the selection of the most appropri- ate and effective method or tools in vulnera- bility detection activity. 展开更多
关键词 software vulnerability detection LOOPHOLES information security evaluationmethod testing framework
下载PDF
Software Backdoor Analysis Based on Sensitive Flow Tracking and Concolic Execution 被引量:3
9
作者 XU Xin WANG Jiajie +2 位作者 CHENG Shaoyin ZHANG Tao JIANG Fan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第5期421-427,共7页
In order to effectively detect and analyze the backdoors this paper introduces a method named Backdoor Analysis based on Sensitive flow tracking and Concolic Execution(BASEC).BASEC uses sensitive flow tracking to ef... In order to effectively detect and analyze the backdoors this paper introduces a method named Backdoor Analysis based on Sensitive flow tracking and Concolic Execution(BASEC).BASEC uses sensitive flow tracking to effectively discover backdoor behaviors, such as stealing secret information and injecting evil data into system, with less false negatives. With concolic execution on predetermined path, the backdoor trigger condition can be extracted and analyzed to achieve high accuracy. BASEC has been implemented and experimented on several software backdoor samples widespread on the Internet, and over 90% of them can be detected. Compared with behavior-based and system-call-based detection methods, BASEC relies less on the historical sample collections, and is more effective in detecting software backdoors, especially those injected into software by modifying and recompiling source codes. 展开更多
关键词 software backdoor detection data flow tracking concolic execution malware detection
原文传递
A Vulnerability Model Construction Method Based on Chemical Abstract Machine
10
作者 LI Xiang CHEN Jinfu +4 位作者 LIN Zhechao ZHANG Lin WANG Zibin ZHOU Minmin XIE Wanggen 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第2期150-162,共13页
It is difficult to formalize the causes of vulnerability, and there is no effective model to reveal the causes and characteristics of vulnerability. In this paper, a vulnerability model construction method is proposed... It is difficult to formalize the causes of vulnerability, and there is no effective model to reveal the causes and characteristics of vulnerability. In this paper, a vulnerability model construction method is proposed to realize the description of vulnerability attribute and the construction of a vulnerability model. A vulnerability model based on chemical abstract machine(CHAM) is constructed to realize the CHAM description of vulnerability model, and the framework of vulnerability model is also discussed. Case study is carried out to verify the feasibility and effectiveness of the proposed model. In addition, a prototype system is also designed and implemented based on the proposed vulnerability model. Experimental results show that the proposed model is more effective than other methods in the detection of software vulnerabilities. 展开更多
关键词 software security vulnerability detection vulner-ability analysis vulnerability model chemical abstract machine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部