The rapid growth in software demand incentivizes software development organizations to develop exclusive software for their customers worldwide.This problem is addressed by the software development industry by softwar...The rapid growth in software demand incentivizes software development organizations to develop exclusive software for their customers worldwide.This problem is addressed by the software development industry by software product line(SPL)practices that employ feature models.However,optimal feature selection based on user requirements is a challenging task.Thus,there is a requirement to resolve the challenges of software development,to increase satisfaction and maintain high product quality,for massive customer needs within limited resources.In this work,we propose a recommender system for the development team and clients to increase productivity and quality by utilizing historical information and prior experiences of similar developers and clients.The proposed system recommends features with their estimated cost concerning new software requirements,from all over the globe according to similar developers’and clients’needs and preferences.The system guides and facilitates the development team by suggesting a list of features,code snippets,libraries,cheat sheets of programming languages,and coding references from a cloud-based knowledge management repository.Similarly,a list of features is suggested to the client according to their needs and preferences.The experimental results revealed that the proposed recommender system is feasible and effective,providing better recommendations to developers and clients.It provides proper and reasonably well-estimated costs to perform development tasks effectively as well as increase the client’s satisfaction level.The results indicate that there is an increase in productivity,performance,and quality of products and a reduction in effort,complexity,and system failure.Therefore,our proposed system facilitates developers and clients during development by providing better recommendations in terms of solutions and anticipated costs.Thus,the increase in productivity and satisfaction level maximizes the benefits and usability of SPL in the modern era of technology.展开更多
As one of the most important attributes of software quality, software maintainability has been widely recognized.However,the existing maintainability evaluation methods are mostly based on subjectively judgment. Thus ...As one of the most important attributes of software quality, software maintainability has been widely recognized.However,the existing maintainability evaluation methods are mostly based on subjectively judgment. Thus it is inapplicable or unbelievable. To evaluate software maintainability objectively,the software configuration management( SCM) data are collected to establish a maintainability model. Based on the hidden Markov chain( HMC), a three-state maintainability estimation model is constructed. To validate the feasibility of the model,a real software example of software maintenance activity is given and the result from the example shows the effectiveness of the proposed method.展开更多
Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability st...Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes.展开更多
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti...The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.展开更多
Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t...Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.展开更多
The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of par...The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.展开更多
Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As re...Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.展开更多
We review the predictions of quark models for multiquark configurations that are bound or resonant states,and compare different methods for estimating the properties of resonances.
Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are ...Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .展开更多
Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely h...Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD.展开更多
Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,...Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.展开更多
Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to disp...Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.展开更多
Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection ...Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.展开更多
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of g...Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.展开更多
Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurat...Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurations.This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms.Initially,an improved active learning approach is employed to select the most valuable unlabeled samples,which are subsequently submitted for expert labeling.This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set.Then the labeled samples are utilized to train the model for network configuration entity extraction.Furthermore,the multi-head self-attention of the transformer model is enhanced by introducing the Adaptive Weighting method based on the Laplace mixture distribution.This enhancement enables the transformer model to dynamically adapt its focus to words in various positions,displaying exceptional adaptability to abnormal data and further elevating the accuracy of the proposed model.Through comparisons with Random Sampling(RANDOM),Maximum Normalized Log-Probability(MNLP),Least Confidence(LC),Token Entrop(TE),and Entropy Query by Bagging(EQB),the proposed method,Entropy Query by Bagging and Maximum Influence Active Learning(EQBMIAL),achieves comparable performance with only 40% of the samples on both datasets,while other algorithms require 50% of the samples.Furthermore,the entity extraction algorithm with the Adaptive Weighted Multi-head Attention mechanism(AW-MHA)is compared with BILSTM-CRF,Mutil_Attention-Bilstm-Crf,Deep_Neural_Model_NER and BERT_Transformer,achieving precision rates of 75.98% and 98.32% on the two datasets,respectively.Statistical tests demonstrate the statistical significance and effectiveness of the proposed algorithms in this paper.展开更多
Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radia...Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.展开更多
Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling ca...Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.展开更多
Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Mo...Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Model (CMM) framework provides a roadmap for improvement but assessing an organization’s CMM Level is challenging. This paper offers a quantitative approach tailored to the CMM framework, using Goal-Question-Metric (GQM) frame-works for each key process area (KPA). These frameworks include metrics and questions to compute maturity scores effectively. The study also refines practices into questions for a thorough assessment. The result is an Analysis Matrix that calculates weighted scores and an overall maturity score. This approach helps organizations assess and enhance their software delivery processes systematically, aiming for improved practices and growth.展开更多
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ...When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Number:61672080,Sponsored Authors:Yang S.,Sponsors’Websites:http://www.nsfc.gov.cn/english/site_1/index.html).
文摘The rapid growth in software demand incentivizes software development organizations to develop exclusive software for their customers worldwide.This problem is addressed by the software development industry by software product line(SPL)practices that employ feature models.However,optimal feature selection based on user requirements is a challenging task.Thus,there is a requirement to resolve the challenges of software development,to increase satisfaction and maintain high product quality,for massive customer needs within limited resources.In this work,we propose a recommender system for the development team and clients to increase productivity and quality by utilizing historical information and prior experiences of similar developers and clients.The proposed system recommends features with their estimated cost concerning new software requirements,from all over the globe according to similar developers’and clients’needs and preferences.The system guides and facilitates the development team by suggesting a list of features,code snippets,libraries,cheat sheets of programming languages,and coding references from a cloud-based knowledge management repository.Similarly,a list of features is suggested to the client according to their needs and preferences.The experimental results revealed that the proposed recommender system is feasible and effective,providing better recommendations to developers and clients.It provides proper and reasonably well-estimated costs to perform development tasks effectively as well as increase the client’s satisfaction level.The results indicate that there is an increase in productivity,performance,and quality of products and a reduction in effort,complexity,and system failure.Therefore,our proposed system facilitates developers and clients during development by providing better recommendations in terms of solutions and anticipated costs.Thus,the increase in productivity and satisfaction level maximizes the benefits and usability of SPL in the modern era of technology.
文摘As one of the most important attributes of software quality, software maintainability has been widely recognized.However,the existing maintainability evaluation methods are mostly based on subjectively judgment. Thus it is inapplicable or unbelievable. To evaluate software maintainability objectively,the software configuration management( SCM) data are collected to establish a maintainability model. Based on the hidden Markov chain( HMC), a three-state maintainability estimation model is constructed. To validate the feasibility of the model,a real software example of software maintenance activity is given and the result from the example shows the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(51904059)Applied Basic Research Program of Liaoning(2022JH2/101300200)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515140188)Fundamental Research Funds for the Central Universities(N_(2)002005,N_(2)125004,N_(2)225044)。
文摘Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes.
基金supported by the NationalNatural Science Foundation of China(Grant No.61867004)the Youth Fund of the National Natural Science Foundation of China(Grant No.41801288).
文摘The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.
基金supported by UniversitiKebangsaan Malaysia,under Dana Impak Perdana 2.0.(Ref:DIP–2022–020).
文摘Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.
基金the Deanship of Scientific Research at King Abdulaziz University,Jeddah,Saudi Arabia under the Grant No.RG-12-611-43.
文摘The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.
文摘Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.
文摘We review the predictions of quark models for multiquark configurations that are bound or resonant states,and compare different methods for estimating the properties of resonances.
文摘Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .
文摘Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD.
基金supported by the Natural Science Foundation of China (22179062,52125202,and U2004209)the Natural Science Foundation of Jiangsu Province (BK20230035)+1 种基金the Fundamental Research Funds for the Central Universities (30922010303)the Intergovernmental Cooperation Projects in the National Key Research and Development Plan of the Ministry of Science and Technology of PRC (2022YFE0196800)
文摘Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.
文摘Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.
基金supported by the Joint Research Fund in Smart Grid(U23B20120)under cooperative agreement between the National Natural Science Foundation of China and State Grid Corporation of China。
文摘Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.
基金support of the National Natural Science Foundation of China(U20A20111,42107189).
文摘Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.
基金supported by the National Key R&D Program of China(2019YFB2103202).
文摘Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurations.This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms.Initially,an improved active learning approach is employed to select the most valuable unlabeled samples,which are subsequently submitted for expert labeling.This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set.Then the labeled samples are utilized to train the model for network configuration entity extraction.Furthermore,the multi-head self-attention of the transformer model is enhanced by introducing the Adaptive Weighting method based on the Laplace mixture distribution.This enhancement enables the transformer model to dynamically adapt its focus to words in various positions,displaying exceptional adaptability to abnormal data and further elevating the accuracy of the proposed model.Through comparisons with Random Sampling(RANDOM),Maximum Normalized Log-Probability(MNLP),Least Confidence(LC),Token Entrop(TE),and Entropy Query by Bagging(EQB),the proposed method,Entropy Query by Bagging and Maximum Influence Active Learning(EQBMIAL),achieves comparable performance with only 40% of the samples on both datasets,while other algorithms require 50% of the samples.Furthermore,the entity extraction algorithm with the Adaptive Weighted Multi-head Attention mechanism(AW-MHA)is compared with BILSTM-CRF,Mutil_Attention-Bilstm-Crf,Deep_Neural_Model_NER and BERT_Transformer,achieving precision rates of 75.98% and 98.32% on the two datasets,respectively.Statistical tests demonstrate the statistical significance and effectiveness of the proposed algorithms in this paper.
基金supported by National Natural Science Foundation of China(No.12175226)。
文摘Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20220649)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.23KJB460010)+1 种基金the Key R&D Program of Jiangsu Province(Grant No.BE2022062)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2143).
文摘Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.
文摘Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Model (CMM) framework provides a roadmap for improvement but assessing an organization’s CMM Level is challenging. This paper offers a quantitative approach tailored to the CMM framework, using Goal-Question-Metric (GQM) frame-works for each key process area (KPA). These frameworks include metrics and questions to compute maturity scores effectively. The study also refines practices into questions for a thorough assessment. The result is an Analysis Matrix that calculates weighted scores and an overall maturity score. This approach helps organizations assess and enhance their software delivery processes systematically, aiming for improved practices and growth.
基金the R&D&I,Spain grants PID2020-119478GB-I00 and,PID2020-115832GB-I00 funded by MCIN/AEI/10.13039/501100011033.N.Rodríguez-Barroso was supported by the grant FPU18/04475 funded by MCIN/AEI/10.13039/501100011033 and by“ESF Investing in your future”Spain.J.Moyano was supported by a postdoctoral Juan de la Cierva Formación grant FJC2020-043823-I funded by MCIN/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR.J.Del Ser acknowledges funding support from the Spanish Centro para el Desarrollo Tecnológico Industrial(CDTI)through the AI4ES projectthe Department of Education of the Basque Government(consolidated research group MATHMODE,IT1456-22)。
文摘When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.