Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells c...Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.展开更多
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many problems when handling various types of project. The reason is;the nature of each project makes it dif...A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many problems when handling various types of project. The reason is;the nature of each project makes it difficult to build a model which can generalize. In this paper we propose the use of Genetic Programming (GP) as an eVolutionary computation approach to handle the software reliability modeling problem. GP deals with one of the key issues in computer science which is called automatic programming. The goal of automatic programming is to create, in an automated way, a computer program that enables a computer to solve problems. GP will be used to build a SRGM which can predict accumulated faults during the software testing process. We evaluate the GP developed model and compare its performance with other common growth models from the literature. Our experiments results show that the proposed GP model is superior compared to Yamada S-Shaped, Generalized Poisson, NHPP and Schneidewind reliability models.展开更多
The present study aims at improving the ability of the canonical genetic programming algorithm to solve problems, and describes an improved genetic programming (IGP). The proposed method can be described as follows: t...The present study aims at improving the ability of the canonical genetic programming algorithm to solve problems, and describes an improved genetic programming (IGP). The proposed method can be described as follows: the first inves-tigates initializing population, the second investigates reproduction operator, the third investigates crossover operator, and the fourth investigates mutation operation. The IGP is examined in two domains and the results suggest that the IGP is more effective and more efficient than the canonical one applied in different domains.展开更多
Assembling paradigms programming are based on the reuses in any programming language (PL) with the passport data of their settings in WSDL. The method of assembling is formal and secures co-operation of the different ...Assembling paradigms programming are based on the reuses in any programming language (PL) with the passport data of their settings in WSDL. The method of assembling is formal and secures co-operation of the different reuses (module, object, component, service and so on) being developed. A formal means of these paradigms creation with help of interfaces is presented. Interface IDL (Stub, Skeleton) is containing data and operations for transmission data to other standard elements linked and describes in the standard language IDL. Assembling will be realized by integration of reuses elements in these paradigms on the instrumental-technological complex (ITC).展开更多
Matlab has a high performance at engineering calculation.C# is good at interface development.Combining their advantages together,hybrid programming with Matlab and C # will help to improve the reliability analysis sof...Matlab has a high performance at engineering calculation.C# is good at interface development.Combining their advantages together,hybrid programming with Matlab and C # will help to improve the reliability analysis software efficiency and accuracy significantly.Procedures of hybrid programming with Matlab and C# in reliability analysis software are introduced in this paper.Finally a mathematical problem is tested to verify the feasibility of this programming method.展开更多
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti...The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.展开更多
Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv...Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.展开更多
The manuscript developed an optimal frequency band transmission system structure of QPSK. The software programming experiment of this complete QPSK optimal band transmission system is designed and realized based on Ma...The manuscript developed an optimal frequency band transmission system structure of QPSK. The software programming experiment of this complete QPSK optimal band transmission system is designed and realized based on Matlab. The experimental parameters used in the design are consistent with the requirements of the actual system parameters. The key code of the software design is given in each module of the system. The whole system is simulated. The simulation results show that the QPSK optimal band transmission system can achieve the best reception performance and realize its function.展开更多
Recently,researchers have shown increasing interest in combining more than one programming model into systems running on high performance computing systems(HPCs)to achieve exascale by applying parallelism at multiple ...Recently,researchers have shown increasing interest in combining more than one programming model into systems running on high performance computing systems(HPCs)to achieve exascale by applying parallelism at multiple levels.Combining different programming paradigms,such as Message Passing Interface(MPI),Open Multiple Processing(OpenMP),and Open Accelerators(OpenACC),can increase computation speed and improve performance.During the integration of multiple models,the probability of runtime errors increases,making their detection difficult,especially in the absence of testing techniques that can detect these errors.Numerous studies have been conducted to identify these errors,but no technique exists for detecting errors in three-level programming models.Despite the increasing research that integrates the three programming models,MPI,OpenMP,and OpenACC,a testing technology to detect runtime errors,such as deadlocks and race conditions,which can arise from this integration has not been developed.Therefore,this paper begins with a definition and explanation of runtime errors that result fromintegrating the three programming models that compilers cannot detect.For the first time,this paper presents a classification of operational errors that can result from the integration of the three models.This paper also proposes a parallel hybrid testing technique for detecting runtime errors in systems built in the C++programming language that uses the triple programming models MPI,OpenMP,and OpenACC.This hybrid technology combines static technology and dynamic technology,given that some errors can be detected using static techniques,whereas others can be detected using dynamic technology.The hybrid technique can detect more errors because it combines two distinct technologies.The proposed static technology detects a wide range of error types in less time,whereas a portion of the potential errors that may or may not occur depending on the 4502 CMC,2023,vol.74,no.2 operating environment are left to the dynamic technology,which completes the validation.展开更多
The scheduling process that aims to assign tasks to members is a difficult job in project management.It plays a prerequisite role in determining the project’s quality and sometimes winning the bidding process.This st...The scheduling process that aims to assign tasks to members is a difficult job in project management.It plays a prerequisite role in determining the project’s quality and sometimes winning the bidding process.This study aims to propose an approach based on multi-objective combinatorial optimization to do this automatically.The generated schedule directs the project to be completed with the shortest critical path,at the minimum cost,while maintaining its quality.There are several real-world business constraints related to human resources,the similarity of the tasks added to the optimization model,and the literature’s traditional rules.To support the decision-maker to evaluate different decision strategies,we use compromise programming to transform multiobjective optimization(MOP)into a single-objective problem.We designed a genetic algorithm scheme to solve the transformed problem.The proposed method allows the incorporation of the model as a navigator for search agents in the optimal solution search process by transferring the objective function to the agents’fitness function.The optimizer can effectively find compromise solutions even if the user may or may not assign a priority to particular objectives.These are achieved through a combination of nonpreference and preference approaches.The experimental results show that the proposed method worked well on the tested dataset.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
Although the WEB software development has some difficulty,but as long as the programming skills to find,in the practice ofoperation will find programming fun,this will stimulate the enthusiasm of students programming....Although the WEB software development has some difficulty,but as long as the programming skills to find,in the practice ofoperation will find programming fun,this will stimulate the enthusiasm of students programming.Exploration of interesting skills programmingof WEB software development is aimed at developers who initial contact with WEB software,through the practice of operation to make themget some fun of WEB programming,from simple to difficult gradually let students master WEB programming skills,improve students' interestin programming.By adding some special effects of webpages to enhance the students' interest in programming,through the key practice ofdatabase,let the students out of fear of programming of database connection.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
We apply the simplex algorithm which is a branch of linear programming to efficiently determine the allocation of resources required to operate a company in the software development field. The main aim of applying thi...We apply the simplex algorithm which is a branch of linear programming to efficiently determine the allocation of resources required to operate a company in the software development field. The main aim of applying this technique is to maximize the profit of a company under certain limitations. This <span>can be done using the trial-and-error approach. However, this tedious</span> process can be replaced by user-level tools such as Excel which are based on linear programming that will give more accurate results. Small software companies cannot afford to hire a high number of senior programmers to produce the required level of quality and to keep up with the demand for adding new features. On the other hand, lowering the quality of the product will reduce the number of customers and decrease profit. Another aspect is maximizing the utilization of hosting servers which are required for providing the services to customers since the cost of buying servers and maintaining them is extremely high. The simplex algorithm in linear programming will take the specified <span>constraints into account to compute the optimal allocation of the available</span> <span>resources to maximize profit and limit the cost. This paper will present a</span> <span>model that uses the simplex algorithm with a set of constraints to determine</span> how many projects of each type a company should take in one period of time.展开更多
Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t...Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.展开更多
The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of par...The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.展开更多
Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As re...Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.展开更多
Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are ...Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .展开更多
Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering.Despite the impact of these transformations on orga-nizati...Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering.Despite the impact of these transformations on orga-nizations,they have not been extensively studied in academia.We conducted a study grounded in workshops and interviews with 99 participants from 30 organizations,including organizations undergoing transformations(“final organizations”)and companies supporting these processes(“consultants”).The study aims to understand the motivations,objectives,and factors driving and challenging these transformations.Over 700 responses were collected to the question and categorized into 32 objectives.The findings show that organizations primarily aim to achieve customer centricity and adaptability,both with 8%of the mentions.Other primary important objectives,with above 4%of mentions,include alignment of goals,lean delivery,sustainable processes,and a flatter,more team-based organizational structure.We also detect discrepancies in perspectives between the objectives identified by the two kinds of organizations and the existing agile literature and models.This misalignment highlights the need for practitioners to understand with the practical realities the organizations face.展开更多
基金supported by Canada First Research Excellence Fund,Medicine by Design(to CMM)。
文摘Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
文摘A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many problems when handling various types of project. The reason is;the nature of each project makes it difficult to build a model which can generalize. In this paper we propose the use of Genetic Programming (GP) as an eVolutionary computation approach to handle the software reliability modeling problem. GP deals with one of the key issues in computer science which is called automatic programming. The goal of automatic programming is to create, in an automated way, a computer program that enables a computer to solve problems. GP will be used to build a SRGM which can predict accumulated faults during the software testing process. We evaluate the GP developed model and compare its performance with other common growth models from the literature. Our experiments results show that the proposed GP model is superior compared to Yamada S-Shaped, Generalized Poisson, NHPP and Schneidewind reliability models.
文摘The present study aims at improving the ability of the canonical genetic programming algorithm to solve problems, and describes an improved genetic programming (IGP). The proposed method can be described as follows: the first inves-tigates initializing population, the second investigates reproduction operator, the third investigates crossover operator, and the fourth investigates mutation operation. The IGP is examined in two domains and the results suggest that the IGP is more effective and more efficient than the canonical one applied in different domains.
文摘Assembling paradigms programming are based on the reuses in any programming language (PL) with the passport data of their settings in WSDL. The method of assembling is formal and secures co-operation of the different reuses (module, object, component, service and so on) being developed. A formal means of these paradigms creation with help of interfaces is presented. Interface IDL (Stub, Skeleton) is containing data and operations for transmission data to other standard elements linked and describes in the standard language IDL. Assembling will be realized by integration of reuses elements in these paradigms on the instrumental-technological complex (ITC).
文摘Matlab has a high performance at engineering calculation.C# is good at interface development.Combining their advantages together,hybrid programming with Matlab and C # will help to improve the reliability analysis software efficiency and accuracy significantly.Procedures of hybrid programming with Matlab and C# in reliability analysis software are introduced in this paper.Finally a mathematical problem is tested to verify the feasibility of this programming method.
基金supported by the NationalNatural Science Foundation of China(Grant No.61867004)the Youth Fund of the National Natural Science Foundation of China(Grant No.41801288).
文摘The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(Grant No.42377174)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022ME198)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020006).
文摘Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.
文摘The manuscript developed an optimal frequency band transmission system structure of QPSK. The software programming experiment of this complete QPSK optimal band transmission system is designed and realized based on Matlab. The experimental parameters used in the design are consistent with the requirements of the actual system parameters. The key code of the software design is given in each module of the system. The whole system is simulated. The simulation results show that the QPSK optimal band transmission system can achieve the best reception performance and realize its function.
基金[King Abdulaziz University][Deanship of Scientific Research]Grant Number[KEP-PHD-20-611-42].
文摘Recently,researchers have shown increasing interest in combining more than one programming model into systems running on high performance computing systems(HPCs)to achieve exascale by applying parallelism at multiple levels.Combining different programming paradigms,such as Message Passing Interface(MPI),Open Multiple Processing(OpenMP),and Open Accelerators(OpenACC),can increase computation speed and improve performance.During the integration of multiple models,the probability of runtime errors increases,making their detection difficult,especially in the absence of testing techniques that can detect these errors.Numerous studies have been conducted to identify these errors,but no technique exists for detecting errors in three-level programming models.Despite the increasing research that integrates the three programming models,MPI,OpenMP,and OpenACC,a testing technology to detect runtime errors,such as deadlocks and race conditions,which can arise from this integration has not been developed.Therefore,this paper begins with a definition and explanation of runtime errors that result fromintegrating the three programming models that compilers cannot detect.For the first time,this paper presents a classification of operational errors that can result from the integration of the three models.This paper also proposes a parallel hybrid testing technique for detecting runtime errors in systems built in the C++programming language that uses the triple programming models MPI,OpenMP,and OpenACC.This hybrid technology combines static technology and dynamic technology,given that some errors can be detected using static techniques,whereas others can be detected using dynamic technology.The hybrid technique can detect more errors because it combines two distinct technologies.The proposed static technology detects a wide range of error types in less time,whereas a portion of the potential errors that may or may not occur depending on the 4502 CMC,2023,vol.74,no.2 operating environment are left to the dynamic technology,which completes the validation.
文摘The scheduling process that aims to assign tasks to members is a difficult job in project management.It plays a prerequisite role in determining the project’s quality and sometimes winning the bidding process.This study aims to propose an approach based on multi-objective combinatorial optimization to do this automatically.The generated schedule directs the project to be completed with the shortest critical path,at the minimum cost,while maintaining its quality.There are several real-world business constraints related to human resources,the similarity of the tasks added to the optimization model,and the literature’s traditional rules.To support the decision-maker to evaluate different decision strategies,we use compromise programming to transform multiobjective optimization(MOP)into a single-objective problem.We designed a genetic algorithm scheme to solve the transformed problem.The proposed method allows the incorporation of the model as a navigator for search agents in the optimal solution search process by transferring the objective function to the agents’fitness function.The optimizer can effectively find compromise solutions even if the user may or may not assign a priority to particular objectives.These are achieved through a combination of nonpreference and preference approaches.The experimental results show that the proposed method worked well on the tested dataset.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
文摘Although the WEB software development has some difficulty,but as long as the programming skills to find,in the practice ofoperation will find programming fun,this will stimulate the enthusiasm of students programming.Exploration of interesting skills programmingof WEB software development is aimed at developers who initial contact with WEB software,through the practice of operation to make themget some fun of WEB programming,from simple to difficult gradually let students master WEB programming skills,improve students' interestin programming.By adding some special effects of webpages to enhance the students' interest in programming,through the key practice ofdatabase,let the students out of fear of programming of database connection.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
文摘We apply the simplex algorithm which is a branch of linear programming to efficiently determine the allocation of resources required to operate a company in the software development field. The main aim of applying this technique is to maximize the profit of a company under certain limitations. This <span>can be done using the trial-and-error approach. However, this tedious</span> process can be replaced by user-level tools such as Excel which are based on linear programming that will give more accurate results. Small software companies cannot afford to hire a high number of senior programmers to produce the required level of quality and to keep up with the demand for adding new features. On the other hand, lowering the quality of the product will reduce the number of customers and decrease profit. Another aspect is maximizing the utilization of hosting servers which are required for providing the services to customers since the cost of buying servers and maintaining them is extremely high. The simplex algorithm in linear programming will take the specified <span>constraints into account to compute the optimal allocation of the available</span> <span>resources to maximize profit and limit the cost. This paper will present a</span> <span>model that uses the simplex algorithm with a set of constraints to determine</span> how many projects of each type a company should take in one period of time.
基金supported by UniversitiKebangsaan Malaysia,under Dana Impak Perdana 2.0.(Ref:DIP–2022–020).
文摘Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.
基金the Deanship of Scientific Research at King Abdulaziz University,Jeddah,Saudi Arabia under the Grant No.RG-12-611-43.
文摘The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.
文摘Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.
文摘Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .
基金funding from the European Commission for the Ruralities Project(grant agreement no.101060876).
文摘Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering.Despite the impact of these transformations on orga-nizations,they have not been extensively studied in academia.We conducted a study grounded in workshops and interviews with 99 participants from 30 organizations,including organizations undergoing transformations(“final organizations”)and companies supporting these processes(“consultants”).The study aims to understand the motivations,objectives,and factors driving and challenging these transformations.Over 700 responses were collected to the question and categorized into 32 objectives.The findings show that organizations primarily aim to achieve customer centricity and adaptability,both with 8%of the mentions.Other primary important objectives,with above 4%of mentions,include alignment of goals,lean delivery,sustainable processes,and a flatter,more team-based organizational structure.We also detect discrepancies in perspectives between the objectives identified by the two kinds of organizations and the existing agile literature and models.This misalignment highlights the need for practitioners to understand with the practical realities the organizations face.