The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in...The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.展开更多
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ...The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.展开更多
In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites)...In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse isotropy after poling, with the isotropic plane perpendicular to the poling direction. In this paper, simple and elegant line-integral expressions are derived for extended displace-ments, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-dimensional (3D) dislocation loops with a constant extended Burgers vector in trans-versely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The derived solutions can also be simply reduced to those expressions for piezoelectric, piezo-magnetic, or purely elastic materials. Several numerical examples are given to show both the multi-field coupling effect and the interface/surface effect in transversely isotropic MEE materials.展开更多
Objective: To determine the relationship between vascular loops in the internal auditory canal and otologic symptoms. Methods: We performed a retrospective study, with a systematic review of the literature and analyze...Objective: To determine the relationship between vascular loops in the internal auditory canal and otologic symptoms. Methods: We performed a retrospective study, with a systematic review of the literature and analyzed the magnetic resonances imaging (MRI) of 91 patients attended in the ENT department since April to June 2013, in order to correlate radiological findings with otologic symptoms. Results: Vascular loops were seen in the internal auditory canal of patients without clinical symptoms;however an association was found between the presence of vascular compression of the eighth nerve displayed on MRI and the presence of sensorineural hearing loss and tinnitus. No association was found between vertigo and vascular loops. Conclusion: The presence of vascular loops in the internal auditory canal may be an incidental finding in MRIs of patients without clinical symptoms. However, in patients with tinnitus or sensorineural hearing loss that is unexplained by other clinical pathologies, these may be correlated with the existence of vascular loops which compress the eighth cranial nerve or contact the bone wall of the internal auditory canal. Further studies involving a larger number of patients are required to accurately evaluate the association between these symptoms and vascular loops.展开更多
In the nondestructive testing and evaluation area,magnetic major hysteresis loop measurement technology are widely applied for ferromagnetic material evaluation.However the characterization ability of major hysteresis...In the nondestructive testing and evaluation area,magnetic major hysteresis loop measurement technology are widely applied for ferromagnetic material evaluation.However the characterization ability of major hysteresis loop measurement technology greatly varies as the evaluated target properties.To solve this limitation,magnetic minor hysteresis loops,which reflect the responses of ferromagnetic material magnetization in a systematic way,is recommend.Inspired by plenty of information carried by the minor loops,the sensitivity mapping technique was developed to achieve the highest sensitivity of minor-loop parameters to the nondestructively evaluated targets.In this study,for the first time,the sensitivity mapping technique is used to measure the tensile force in a steel strand and evaluate the effective case depth in induction-hardened steel rods.The method and procedures for the sensitivity mapping technique are given before experimental detection.The obtained experimental results indicate that the linear correlation between the induced voltage(or the magnetic induction intensity)and the tensile force(or effective case depth)exists at most of the locations in the cluster of minor loops.The obtained sensitivity maps can be used to optimize the applied magnetic field(or excitation current)and the analyzed locations at the minor loops for achieving the highest sensitivity.For the purpose of tensile force measurement,it is suggested that the strand should be firstly magnetized to the near-saturation state and then restored to the remanent state.In this way,the highest sensitivity is obtained as about 15.26 mV/kN.As for the induction-hardened steel rods,the highest sensitivity of magnetic induction intensity to the effective case depth occurs under low magnetic field conditions and the absolute value of the highest sensitivity is about 0.1110 T/mm.This indicates that if the highest sensitivity is required in the case depth evaluation,the induction-hardened steel rods are only required to be weakly magnetized.The proposed sensitivity mapping technique shows the good performance in the high-sensitivity evaluation of tensile force and case depth in ferromagnetic materials and its application scope can be extended to other nondestructive detection fields.展开更多
CMOS analog and mixed-signal phase-locked loops(PLL)are widely used in varies of the system-on-chips(SoC)as the clock generator or frequency synthesizer.This paper presents an overview of the AMS-PLL,including:1)a bri...CMOS analog and mixed-signal phase-locked loops(PLL)are widely used in varies of the system-on-chips(SoC)as the clock generator or frequency synthesizer.This paper presents an overview of the AMS-PLL,including:1)a brief introduction of the basics of the charge-pump based PLL,which is the most widely used AMS-PLL architecture due to its simplicity and robustness;2)a summary of the design issues of the basic CPPLL architecture;3)a systematic introduction of the techniques for the performance enhancement of the CPPLL;4)a brief overview of ultra-low-jitter AMS-PLL architectures which can achieve lower jitter(<100 fs)with lower power consumption compared with the CPPLL,including the injection-locked PLL(ILPLL),subsampling(SSPLL)and sampling PLL(SPLL);5)a discussion about the consideration of the AMS-PLL architecture selection,which could help designers meet their performance requirements.展开更多
Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons a...Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons are produced by bombarding a low-energy proton beam onto a beryllium or lithium target.In such an acceleratorbased neutron source,a radio frequency quadrupole(RFQ)is usually utilized to accelerate a high-intensity proton beam to a few MeV.This study mainly covers the highfrequency structure design optimizations of a 4-vane RFQ with pi-mode stabilizer loops(PISLs)and its RF stability analysis.A 176 MHz RFQ accelerator is designed to operate at a 10%duty factor and could accelerate an80 mA proton beam from 65 keV to 2.5 MeV within a length of 5.3 m.The adoption of PISLs ensures high RF stability,eases the operation of the accelerator,and implies less stringent alignment and machining tolerances.展开更多
We propose a bulk negative refractive index (NRI) metamaterial composed of periodic array of tightly coupled metallic cross-pairs printed oR the six sides of a cube for applications of superlenses. The structural ch...We propose a bulk negative refractive index (NRI) metamaterial composed of periodic array of tightly coupled metallic cross-pairs printed oR the six sides of a cube for applications of superlenses. The structural characteristics of the three-dimensional (3D) metamaterial consist in the high symmetry and the superposition of metallic cross-pairs, which can increase the magnetic inductive coupling between adjacent cross-pairs and realize a broadband and isotropic NRI. The proposed 3D structure is simulated using the CS~ Microwave Studio 2006 to verify the design validity. The simulation results show that the proposed structure can not only realize simultaneously an electric and magnetic response to an incident electromagnetic (EM) wave, but also exhibit a broadband NRI whose relative bandwidth can reach up to 56.7%. In addition, the NRI band is insensitive to tile polarization and the incident angle of the incident EM wave. Therefore, the proposed metamaterial is a good candidate material as three-dimensional broadband isotropic NRI metamaterial.展开更多
The matrix D describing relations of the loops to the nodes in the graph and also the setsof branches based on the independent loops and their matrix Q are defined.The theorem in whichthe product of the loop-node matr...The matrix D describing relations of the loops to the nodes in the graph and also the setsof branches based on the independent loops and their matrix Q are defined.The theorem in whichthe product of the loop-node matrix D multiplied by the incidence matrix A<sub>a</sub> is equal to matrix Qis put forward and proved.The admittance matrix Y<sub>lc</sub> of the sets of the branches is defined and it isassumed that the vector V<sub>lc</sub> of voltage of the sets of branches to be a calculative quantity.The equa-tion of the sets of branches is derived and the analysis method of the sets of branches based on theindependent loops in the electric network is presented.展开更多
In scaled CMOS processes, the single-event effects generate missing output pulses in Delay-Locked Loop (DLL). Due to its effective sequence detection of the missing pulses in the proposed Error Correction Circuit (ECC...In scaled CMOS processes, the single-event effects generate missing output pulses in Delay-Locked Loop (DLL). Due to its effective sequence detection of the missing pulses in the proposed Error Correction Circuit (ECC) and its portability to be applied to any DLL type, the ECC mitigates the impact of single-event effects and completes its operation with less design complexity without any concern about losing the information. The ECC has been implemented in 180 nm CMOS process and measured the accuracy of mitigation on simulations at LETs up to 100 MeV-cm<sup>2</sup>/mg. The robustness and portability of the mitigation technique are validated through the results obtained by implementing proposed ECC in XilinxArtix 7 FPGA.展开更多
In this paper,the bifurcation problems of twisted and degenerated homoclinic loop for higher dimensional systems are studied.Under the nonresonant condition,the existence,uniqueness,and incoexistence of the 1-homoclin...In this paper,the bifurcation problems of twisted and degenerated homoclinic loop for higher dimensional systems are studied.Under the nonresonant condition,the existence,uniqueness,and incoexistence of the 1-homoclinic loop and 1-periodic orbit near Γ are obtained,and the inexistence of the 2-homoclinic loop and the existence of 2-periodic orbit near Γ are also given.展开更多
This paper offers a new method to solve the problem of software pipelininsr on nested loops. We first introduce our new software pipelininog method. Ruminate Method, which can optimize program with nested loops. We al...This paper offers a new method to solve the problem of software pipelininsr on nested loops. We first introduce our new software pipelininog method. Ruminate Method, which can optimize program with nested loops. We also outline an algorithm to realize it and introduce the hardware support we designed. The performance of Ruminate Method is analyzed at the end of this paper with the aid of our preliminary experimental result.展开更多
Investigation into the magnets with different squareness of hysteresis loop(SHL) reveals that the microstructure of sintered NdFeB magnets has great effects on the SHL of the magnets. The abnormal grain growth deterio...Investigation into the magnets with different squareness of hysteresis loop(SHL) reveals that the microstructure of sintered NdFeB magnets has great effects on the SHL of the magnets. The abnormal grain growth deteriorates the SHL seriously. The shape of the grain and the grain boundary affect the intensity of demagnetization field, and consequently on the SHL. The added elements have effects on the phase structures and distributions in the magnets, which influences the uniform of demagnetization field.展开更多
By use of the recursive formulation of flexible multibody system with closed loops,this paper studies the dynamic simulation of complicated multibody system.The conception of static correction modes in structural dyna...By use of the recursive formulation of flexible multibody system with closed loops,this paper studies the dynamic simulation of complicated multibody system.The conception of static correction modes in structural dynamics is introduced to present the local deformation effects due to reaction forces at kinematic joints.A space four bar mechanism is utilized here as an example to describe the method of selecting static correction modes.Compared with vibration normal modes, static correction modes are demonstrated to be effective in numerical simulation.展开更多
Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The e...Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.展开更多
The plasma shape and other paremeters such as /3P, li is important for the tokamak deveice where the plasma has a non-circular cross-section of sufficient elongation. The measuered signals of magnetic probes and flux ...The plasma shape and other paremeters such as /3P, li is important for the tokamak deveice where the plasma has a non-circular cross-section of sufficient elongation. The measuered signals of magnetic probes and flux loops are used to reconstruct the plasma shape and the current profile in device operation and plasma shape feed back control system. So the number and positions of magnetic probes and flux loops provides the basis of the plasma reconstruction. This paper instroduce how to use EFIT code (equilibrium fitting code) to determine the number and positions of the magnetic probes and flux loops. The simulation result is given also.展开更多
Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroe...Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.展开更多
基金supported by the National Natural Science Foundation of China(No.U1967212)the Fundamental Research Funds for the Central Universities(No.2021MS032)the Nuclear Materials Innovation Foundation(No.WDZC-2023-AW-0305)。
文摘The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.
基金Supported by the National Natural Science Foundation of China(51075204)the Graduate Innovation Foundation of Jiangsu Province(CX08B-133Z)the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics(BCXJ08-05)~~
文摘The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.
基金Project supported by the National Project of Scientific and Technical Supporting Programs Funded by Ministry of Science&Technology of China(No.2009BAG12A01-A03-2)the National Natural Science Foundation of China(Nos.10972196,11090333,11172273,and 11321202)
文摘In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse isotropy after poling, with the isotropic plane perpendicular to the poling direction. In this paper, simple and elegant line-integral expressions are derived for extended displace-ments, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-dimensional (3D) dislocation loops with a constant extended Burgers vector in trans-versely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The derived solutions can also be simply reduced to those expressions for piezoelectric, piezo-magnetic, or purely elastic materials. Several numerical examples are given to show both the multi-field coupling effect and the interface/surface effect in transversely isotropic MEE materials.
文摘Objective: To determine the relationship between vascular loops in the internal auditory canal and otologic symptoms. Methods: We performed a retrospective study, with a systematic review of the literature and analyzed the magnetic resonances imaging (MRI) of 91 patients attended in the ENT department since April to June 2013, in order to correlate radiological findings with otologic symptoms. Results: Vascular loops were seen in the internal auditory canal of patients without clinical symptoms;however an association was found between the presence of vascular compression of the eighth nerve displayed on MRI and the presence of sensorineural hearing loss and tinnitus. No association was found between vertigo and vascular loops. Conclusion: The presence of vascular loops in the internal auditory canal may be an incidental finding in MRIs of patients without clinical symptoms. However, in patients with tinnitus or sensorineural hearing loss that is unexplained by other clinical pathologies, these may be correlated with the existence of vascular loops which compress the eighth cranial nerve or contact the bone wall of the internal auditory canal. Further studies involving a larger number of patients are required to accurately evaluate the association between these symptoms and vascular loops.
基金Supported by National Key R&D Program of China(Grant No.2018YFF01012300)National Natural Science Foundation of China(Grant No.11527801).
文摘In the nondestructive testing and evaluation area,magnetic major hysteresis loop measurement technology are widely applied for ferromagnetic material evaluation.However the characterization ability of major hysteresis loop measurement technology greatly varies as the evaluated target properties.To solve this limitation,magnetic minor hysteresis loops,which reflect the responses of ferromagnetic material magnetization in a systematic way,is recommend.Inspired by plenty of information carried by the minor loops,the sensitivity mapping technique was developed to achieve the highest sensitivity of minor-loop parameters to the nondestructively evaluated targets.In this study,for the first time,the sensitivity mapping technique is used to measure the tensile force in a steel strand and evaluate the effective case depth in induction-hardened steel rods.The method and procedures for the sensitivity mapping technique are given before experimental detection.The obtained experimental results indicate that the linear correlation between the induced voltage(or the magnetic induction intensity)and the tensile force(or effective case depth)exists at most of the locations in the cluster of minor loops.The obtained sensitivity maps can be used to optimize the applied magnetic field(or excitation current)and the analyzed locations at the minor loops for achieving the highest sensitivity.For the purpose of tensile force measurement,it is suggested that the strand should be firstly magnetized to the near-saturation state and then restored to the remanent state.In this way,the highest sensitivity is obtained as about 15.26 mV/kN.As for the induction-hardened steel rods,the highest sensitivity of magnetic induction intensity to the effective case depth occurs under low magnetic field conditions and the absolute value of the highest sensitivity is about 0.1110 T/mm.This indicates that if the highest sensitivity is required in the case depth evaluation,the induction-hardened steel rods are only required to be weakly magnetized.The proposed sensitivity mapping technique shows the good performance in the high-sensitivity evaluation of tensile force and case depth in ferromagnetic materials and its application scope can be extended to other nondestructive detection fields.
基金supported by the Pioneer Hundred Talents Program,Chinese Academy of Sciences.
文摘CMOS analog and mixed-signal phase-locked loops(PLL)are widely used in varies of the system-on-chips(SoC)as the clock generator or frequency synthesizer.This paper presents an overview of the AMS-PLL,including:1)a brief introduction of the basics of the charge-pump based PLL,which is the most widely used AMS-PLL architecture due to its simplicity and robustness;2)a summary of the design issues of the basic CPPLL architecture;3)a systematic introduction of the techniques for the performance enhancement of the CPPLL;4)a brief overview of ultra-low-jitter AMS-PLL architectures which can achieve lower jitter(<100 fs)with lower power consumption compared with the CPPLL,including the injection-locked PLL(ILPLL),subsampling(SSPLL)and sampling PLL(SPLL);5)a discussion about the consideration of the AMS-PLL architecture selection,which could help designers meet their performance requirements.
文摘Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons are produced by bombarding a low-energy proton beam onto a beryllium or lithium target.In such an acceleratorbased neutron source,a radio frequency quadrupole(RFQ)is usually utilized to accelerate a high-intensity proton beam to a few MeV.This study mainly covers the highfrequency structure design optimizations of a 4-vane RFQ with pi-mode stabilizer loops(PISLs)and its RF stability analysis.A 176 MHz RFQ accelerator is designed to operate at a 10%duty factor and could accelerate an80 mA proton beam from 65 keV to 2.5 MeV within a length of 5.3 m.The adoption of PISLs ensures high RF stability,eases the operation of the accelerator,and implies less stringent alignment and machining tolerances.
基金supported by the National Natural Science Foundation of China (Grant No. 51005001)the National Science Foundation for Post-doctoral Scientists in China (Grant No. 20090450226)+1 种基金the Research Foundation of Education Bureau of Heilongjiang Province, China (Grant No. 11551098)the Youth Foundation of Harbin University of Science and Technology, China (Grant No. 2009YF024)
文摘We propose a bulk negative refractive index (NRI) metamaterial composed of periodic array of tightly coupled metallic cross-pairs printed oR the six sides of a cube for applications of superlenses. The structural characteristics of the three-dimensional (3D) metamaterial consist in the high symmetry and the superposition of metallic cross-pairs, which can increase the magnetic inductive coupling between adjacent cross-pairs and realize a broadband and isotropic NRI. The proposed 3D structure is simulated using the CS~ Microwave Studio 2006 to verify the design validity. The simulation results show that the proposed structure can not only realize simultaneously an electric and magnetic response to an incident electromagnetic (EM) wave, but also exhibit a broadband NRI whose relative bandwidth can reach up to 56.7%. In addition, the NRI band is insensitive to tile polarization and the incident angle of the incident EM wave. Therefore, the proposed metamaterial is a good candidate material as three-dimensional broadband isotropic NRI metamaterial.
文摘The matrix D describing relations of the loops to the nodes in the graph and also the setsof branches based on the independent loops and their matrix Q are defined.The theorem in whichthe product of the loop-node matrix D multiplied by the incidence matrix A<sub>a</sub> is equal to matrix Qis put forward and proved.The admittance matrix Y<sub>lc</sub> of the sets of the branches is defined and it isassumed that the vector V<sub>lc</sub> of voltage of the sets of branches to be a calculative quantity.The equa-tion of the sets of branches is derived and the analysis method of the sets of branches based on theindependent loops in the electric network is presented.
文摘In scaled CMOS processes, the single-event effects generate missing output pulses in Delay-Locked Loop (DLL). Due to its effective sequence detection of the missing pulses in the proposed Error Correction Circuit (ECC) and its portability to be applied to any DLL type, the ECC mitigates the impact of single-event effects and completes its operation with less design complexity without any concern about losing the information. The ECC has been implemented in 180 nm CMOS process and measured the accuracy of mitigation on simulations at LETs up to 100 MeV-cm<sup>2</sup>/mg. The robustness and portability of the mitigation technique are validated through the results obtained by implementing proposed ECC in XilinxArtix 7 FPGA.
基金Supported by the National Natural Science Foundation of China(1 0 0 71 0 0 2 2 ) and the Shanghai PriorityAcademic Discipline
文摘In this paper,the bifurcation problems of twisted and degenerated homoclinic loop for higher dimensional systems are studied.Under the nonresonant condition,the existence,uniqueness,and incoexistence of the 1-homoclinic loop and 1-periodic orbit near Γ are obtained,and the inexistence of the 2-homoclinic loop and the existence of 2-periodic orbit near Γ are also given.
文摘This paper offers a new method to solve the problem of software pipelininsr on nested loops. We first introduce our new software pipelininog method. Ruminate Method, which can optimize program with nested loops. We also outline an algorithm to realize it and introduce the hardware support we designed. The performance of Ruminate Method is analyzed at the end of this paper with the aid of our preliminary experimental result.
基金Project supported by Shanghai Leading Academic Discipline (P1502)
文摘Investigation into the magnets with different squareness of hysteresis loop(SHL) reveals that the microstructure of sintered NdFeB magnets has great effects on the SHL of the magnets. The abnormal grain growth deteriorates the SHL seriously. The shape of the grain and the grain boundary affect the intensity of demagnetization field, and consequently on the SHL. The added elements have effects on the phase structures and distributions in the magnets, which influences the uniform of demagnetization field.
文摘By use of the recursive formulation of flexible multibody system with closed loops,this paper studies the dynamic simulation of complicated multibody system.The conception of static correction modes in structural dynamics is introduced to present the local deformation effects due to reaction forces at kinematic joints.A space four bar mechanism is utilized here as an example to describe the method of selecting static correction modes.Compared with vibration normal modes, static correction modes are demonstrated to be effective in numerical simulation.
文摘Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.
基金The project supported by the National Meg-Science Engineering Project of the Chinese Government
文摘The plasma shape and other paremeters such as /3P, li is important for the tokamak deveice where the plasma has a non-circular cross-section of sufficient elongation. The measuered signals of magnetic probes and flux loops are used to reconstruct the plasma shape and the current profile in device operation and plasma shape feed back control system. So the number and positions of magnetic probes and flux loops provides the basis of the plasma reconstruction. This paper instroduce how to use EFIT code (equilibrium fitting code) to determine the number and positions of the magnetic probes and flux loops. The simulation result is given also.
文摘Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.