期刊文献+
共找到4,811篇文章
< 1 2 241 >
每页显示 20 50 100
Large eddy simulations of zinc ions transfer to turbulent flows from hyporheic zone
1
作者 Yi-ming Jin Jin-feng Chen +3 位作者 Jin-long Zhang Ze-hao Zhao Dong-liang Fan Yu-hong Dong 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第4期650-661,共12页
Metal contaminants from surface water pollution events often enter hyporheic zones,under certain conditions,they may be released back into streams,causing secondary pollution to the water quality.The present study inv... Metal contaminants from surface water pollution events often enter hyporheic zones,under certain conditions,they may be released back into streams,causing secondary pollution to the water quality.The present study investigated the effects of adsorption,permeability,and anisotropy of sediment beds on the release of zinc ions(Zn2+)from the hyporheic zone into overlying turbulent flows using large-eddy simulations(LES).The volume-averaged Navier-Stokes equations and advection-diffusion equation with adsorption term were used to describe the sediment in-flow,adsorption,and convective diffusion of Zn2+within the sediment layer.The effects of sediment permeability on the Zn2+concentration distribution and mass transfer processes were investigated by time-averaged statistics of flow and concentration fields.The results show that adsorption becomes stronger as the pH value increases,leading to a slow increase in Zn2+concentration in the overlying water layer and reaching a lower steady-state concentration.Higher overall permeability of the sediment layer can enhance mass and momentum exchange near the sediment-water interface(SWI),and intensify the release of Zn2+from the sediment layer into the overlying water.As the wall-normal permeability of the sediment layer increases,the normal turbulent intensity strengthens,momentum transport enhances,the wall-normal Zn2+concentration flux increases,the effective diffusion coefficient increases,and the concentration in the overlying water increases. 展开更多
关键词 Zn^(2+)contaminants ADSORPTION hyporheic exchange turbulent flow large eddy simulation(LES)
原文传递
Stochastic Analysis and Modeling of Velocity Observations in Turbulent Flows
2
作者 Evangelos Rozos Jorge Leandro Demetris Koutsoyiannis 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期45-56,共12页
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i... Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment. 展开更多
关键词 Smart modeling turbulent flows Data analysis Stochastic analysis Image velocimetry
下载PDF
Turbine Passage Secondary Flow Dynamics and Endwall Heat Transfer Under Different Inflow Turbulence
3
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期51-62,共12页
This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Re... This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth. 展开更多
关键词 TURBINE VANE heat transfer ENDWALL turbulENCE secondary flow
下载PDF
Analysis of particle dispersion in a turbulent flow considering particle rotation 被引量:1
4
作者 Wenshi Huang Yang Zhang +2 位作者 Yuxin Wu Jingyu Wang Minmin Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期29-39,共11页
Non-spherical particles exist widely in natural and industrial fluid systems and the motions of nonspherical particles are significantly different from that of spherical particles.In this paper,a simplified model of n... Non-spherical particles exist widely in natural and industrial fluid systems and the motions of nonspherical particles are significantly different from that of spherical particles.In this paper,a simplified model of non-spherical particles considering particle drag correction,lift,and rotation was established.Based on the Eulerian-Lagrangian simulation,the dispersion characteristics of spherical and nonspherical particles with different Stokes numbers in a high-speed turbulent jet were analyzed and compared considering the effect of particle rotation.The results show that,the differences in particle dispersion and radial velocity fluctuation between non-spherical particles and spherical particles in the jet are significant,especially when Stokes number is large.Moreover,the effects of different type of forces on the dispersion of non-spherical particles and spherical particles were compared in detail,which revealed that the change of the Magnus force caused by the increase in the angular velocity of non-spherical particles plays a dominant role in the differences of particle dispersion. 展开更多
关键词 DISPERSION PARTICLE Particle-laden flows Particle rotation turbulent flow
下载PDF
Observed characteristics of flow,water mass,and turbulent mixing in the Preparis Channel 被引量:1
5
作者 Ruijie Ye Feng Zhou +7 位作者 Xiao Ma Dingyong Zeng Feilong Lin Hongliang Li Chenggang Liu Soe Moe Lwin Hlaing Swe Win Soe Pyae Aung 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期83-93,共11页
Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were ... Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were used to determine the characteristics of water masses,turbulent mixing,and flows in the Preparis Channel.The unprecedented short-term mooring data reveal that a deep current in the deep narrow passage(below 400 m)of the Preparis Channel flows toward the Bay of Bengal(BoB)with a mean along-stream velocity of 25.26 cm/s at depth of 540 m;above the deep current,there are a relatively weak current flows toward the AS with a mean along-stream velocity of 15.46 cm/s between 500 m and 520 m,and another weak current flows toward the BoB between 430 m and 500 m.Thus,a sandwiched vertical structure of deep currents(below 400 m)is present in the Preparis Channel.The volume transport below 400 m is 0.06 Sv(1 Sv=106 m^(3)/s)from the AS to the BoB.In the upper layer(shallower than 300 m),the sea water of the AS is relatively warmer and fresher than that in the BoB,indicating a strong exchange through the channel.Microstructure profiler observations reveal that the turbulent diffusivity in the upper layer of the Preparis Channel reaches O(10−4 m^(2)/s),one order larger than that in the interior of the BoB and over the continental slope of the northern AS.We speculate that energetic high-mode internal tides in the Preparis Channel contribute to elevated turbulent mixing.In addition,a local“hotspot”of turbidity is identified at the deep mooring site,at depth of about 100 m,which corresponds to the location of elevated turbulent mixing in the Preparis Channel. 展开更多
关键词 deep flow turbulent mixing water mass Preparis Channel
下载PDF
Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow 被引量:1
6
作者 Qingjia Meng Zhou Jiang Jianchun Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期58-69,共12页
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ... Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model. 展开更多
关键词 Compressible turbulent channel flow Fully connected neural network model Large eddy simulation
下载PDF
Simulation Analysis of New Energy Vehicle Engine Cooling System Based on K-E Turbulent Flow Mathematical Model
7
作者 Hongyu Mu Yinyan Wang +7 位作者 Chuanlei Yang Hong Teng Xingtian Zhao Hongquan Lu Dechun Wang Shiyang Hao Xiaolong Zhang Yan Jin 《Energy Engineering》 EI 2023年第10期2325-2342,共18页
New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper us... New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine. 展开更多
关键词 New energy vehicle new energy vehicle engine k-ε turbulent flow mathematical model cooling system PID control
下载PDF
STUDY ON TURBULENT SPOTS IN PLANE COUETTE FLOW
8
作者 陈林 唐登斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第3期211-217,共7页
Turbulent spots play a key role in the formation of the turbulence and the transition. The generation and evolution of turbulent spots using the wall impulse model in the plane Couette flow are studied by direct numer... Turbulent spots play a key role in the formation of the turbulence and the transition. The generation and evolution of turbulent spots using the wall impulse model in the plane Couette flow are studied by direct numerical simulation of Navier-Stokes equations. A group of three-dimensional coupling compact difference schemes with high accuracy and high resolution is used in the numerical calculation. The important characteristics of turbulent spots based on the results of examples are analyzed, including the formation of random pulse, the generation of Reynolds stress, the growth of disturbance amplitude, and the continuous change of spot shape, especially the complex evolution process of the streamwise vortices. Computational results confirm that basic properties of turbulent spots in the laminar flow are similar to those in the turbulent flow. 展开更多
关键词 turbulent spot streamwise vortex Couette flow direct numerical simulation
下载PDF
Numerical simulation of gas–liquid flow in the bubble column using Wray–Agarwal turbulence model coupled with population balance model 被引量:1
9
作者 Hongwei Liang Wenling Li +3 位作者 Zisheng Feng Jianming Chen Guangwen Chu Yang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期205-223,共19页
In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM)... In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors.. 展开更多
关键词 CFD–PBM Wray–Agarwal turbulence model Gas–liquid flow Bubble column Interfacial force Wall lubrication force
下载PDF
Direct numerical simulation of compressible turbulent flows 被引量:18
10
作者 Xin-Liang Li De-Xun Fu +1 位作者 Yan-Wen Ma Xian Liang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第6期795-806,共12页
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-laye... This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence. 展开更多
关键词 Direct numerical simulation Compressible turbulence Coherent structures turbulent boundary-layer flow
下载PDF
NUMERICAL SIMULATION OF 3-D DENSE SOLID-LIQUID TWO-PHASE TURBULENT FLOW IN A NON-CLOGGING MUD PUMP 被引量:10
11
作者 YuanShouqi ZhangPei~ng ZhangJinfeng XuWeixinq 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第4期623-627,共5页
A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to T... A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to TECPLOT as the post-processor, the simulation results isvisualized. The results show the main flow characteristics: There exists backflow and aberrantvelocities at inlet area and a relative velocity slip between two phases; A jet-wake flow pattern isdiscerned around the shroud-suction side area; The relative velocity vector of solid phase iscloser to the pressure surface than that of liquid phase and the trend is more obvious with theincrease of diameter; The kinetic energy of turbulence k and the dissipation rate e reach theirpeaks at the corner of pressure and suction surface. The simulation results show a good agreementwith the experimental flow features in the impeller channel, which prove the turbulent model used isvalid and provide a theoretical design basis to non-clogging pumps. 展开更多
关键词 Non-clogging pump Two-phase flow turbulent flow Numerical simulation
下载PDF
Structural ensemble dynamics based closure model for wall-bounded turbulent flow 被引量:11
12
作者 Zhen-Su She Ning Hu You Wu State Key Laboratory for Turbulence and Complex Systems and Dept Mechanical and Aerospace Engineering,College of Engineering, Peking University,100871 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期731-736,共6页
Wall-bounded turbulent flow involves the development of multi-scale turbulent eddies, as well as a sharply varying boundary layer. Its theoretical descriptions are yet phenomenological. We present here a new framework... Wall-bounded turbulent flow involves the development of multi-scale turbulent eddies, as well as a sharply varying boundary layer. Its theoretical descriptions are yet phenomenological. We present here a new framework called structural ensemble dynamics (SED), which aims at using systematically all relevant statistical properties of turbulent structures for a quantitative description of ensemble means. A new set of closure equations based on the SED approach for a turbulent channel flow is presented. SED order functions are defined, and numerically determined from data of direct numerical simulations (DNS). Computational results show that the new closure model reproduces accurately the solution of the original Navier-Stokes simulation, including the mean velocity profile, the kinetic energy of the streamwise velocity component, and every term in the energy budget equation. It is suggested that the SED-based studies of turbulent structure builds a bridge between the studies of physical mechanisms of turbulence and the development of accurate model equations for engineering predictions. 展开更多
关键词 turbulENCE Closure equation Channel flow Structural ensemble dynamics
下载PDF
Numerical Simulation on Gas-Solid Two-Phase Turbulent Flow in FCC Riser Reactors(Ⅰ) Turbulent Gas-Solid Flow-Reaction Model 被引量:3
13
作者 高金森 徐春明 +2 位作者 杨光华 郭印诚 林文漪 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第1期16-24,共9页
Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,... Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model. 展开更多
关键词 RISER REACTOR turbulent flow GAS-SOLID flow flow-reaction model numerical algorithm
下载PDF
The investigation and optimization of drag reduction in turbulent flow of Newtonian fluid passing through horizontal pipelines using functionalized magnetic nanophotocatalysts and lecithin 被引量:3
14
作者 Nadia Esfandiari Reza Zareinezhad Zahra Habibi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期63-75,共13页
The nanophotocatalysts were synthesized in four stages and evaluated by FTIR, FESEM and VSM analysis. The influence of nanofluids containing functionalized magnetic Ti O2 nanophotocatalyst and dipalmitoylphosphatidylc... The nanophotocatalysts were synthesized in four stages and evaluated by FTIR, FESEM and VSM analysis. The influence of nanofluids containing functionalized magnetic Ti O2 nanophotocatalyst and dipalmitoylphosphatidylcholine lecithin in drag reduction of turbulent flow in four horizontal pipelines was studied. The effective parameters on drag reduction(nanoparticle concentration, surfactant concentration, p H and Re number) were investigated and optimized in each pipeline using response surface method. The drag reduction in 1/2 " galvanized, 3/4" galvanized, 1/2 "five-layer and 1/2" cuprous pipelines was found 99.1%, 92.5%, 87.6% and 85.2%, respectively. The model adequacy was measured using ANOVA. Based on the high determination coefficient, more than 95% of variance of experimental data in all pipelines was described by quadratic model. 展开更多
关键词 Drag reduction LECITHIN FUNCTIONALIZED MAGNETIC nanophotocatalyst turbulent flow Response surface
下载PDF
Numerical investigation of velocity distribution of turbulent flow through vertically double-layered vegetation 被引量:5
15
作者 Naveed Anjum Norio Tanaka 《Water Science and Engineering》 EI CAS CSCD 2019年第4期319-329,共11页
The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence... The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence model,using the computational fluid dynamics(CFD)code FLUENT.The detailed velocity distribution was explored with a varying initial Froude number(Fr),with consideration of the steady subcritical flow conditions of an inland tsunami.In VDLV flows,the numerical model successfully captured the inflection point in the profiles of mean streamwise velocities in the mixing-layer region around the top of short submerged vegetation.An upward and downward movement of flow occurred at the positions located just behind the tall and short vegetation,respectively.Overall,higher streamwise velocities were observed in the upper vegetation layer due to high porosity,with Pr=98%(sparse vegetation,where Pr is the porosity),as compared to those in the lower vegetation layer,which had comparatively low porosity,with Pr=91%(dense vegetation).A rising trend of velocities was found as the flow passed through the vegetation region,followed by a clear sawtooth distribution,as compared to the regions just upstream and downstream of vegetation where the flow was almost uniform.In VDLV flows,a rising trend in the flow resistance was observed with the increase in the initial Froude number,i.e.,Fr?0.67,0.70,and 0.73.However,the flow resistance in the case of SLV was relatively very low.The numerical results also show the flow structures within the vicinity of short and tall vegetation,which are difficult to attain through experimental measurements. 展开更多
关键词 Vertically double-layered vegetation Single-layered rigid vegetation Numerical modeling FLUENT Velocity distribution turbulent flow
下载PDF
Effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows 被引量:3
16
作者 Yitong FAN Cheng CHENG Weipeng LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第3期331-342,共12页
As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposi... As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number. 展开更多
关键词 drag DECOMPOSITION mean SKIN FRICTION turbulent channel flow REYNOLDS NUMBER effect
下载PDF
Study of Turbulent Flow of Film Cooling Holes with Lateral Expanded Exits 被引量:3
17
作者 施红辉 佐佐俊祐 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2002年第4期200-207,共8页
Hot wire measurements and flow visualization are presented for studying the turbulent flow field over a flat gas turbine film cooling blade with lateral expanded holes. Three mass flux ratios of jet to free stream, M ... Hot wire measurements and flow visualization are presented for studying the turbulent flow field over a flat gas turbine film cooling blade with lateral expanded holes. Three mass flux ratios of jet to free stream, M = 0.5, 0.89, 1.5, are tested. The streamwise velocity, the turbulent intensities and the Reynolds shear stress are measured. The effect of the lateral expanded holes on the improvement of the turbulent flow field for film cooling of gas turbines can be analyzed from the measured spatial di... 展开更多
关键词 turbulent flow film cooling lateral expanded hole hot wire anemometry flow visualization
下载PDF
Study on Quantitative Relationship between Surface Wettability and Frictional Coefficient of Liquid Flowing in a Turbulent Horizontal Pipe 被引量:4
18
作者 Jing Jiaqiang Qi Hongyuan +5 位作者 Jiang Huayi Liang Aiguo Shi Jianying Wang Yulong Sun Nana Zhang Yixiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第3期105-114,共10页
This paper had investigated the effects of surface wettability on the frictional resistance of turbulent horizontal flow for tap water in five pipes made of various materials and four kinds of liquids in a polytetrafl... This paper had investigated the effects of surface wettability on the frictional resistance of turbulent horizontal flow for tap water in five pipes made of various materials and four kinds of liquids in a polytetrafluoroethylene(PTFE) pipe,with the same inner diameter of 14 mm. Pressure drops were measured under different flow rates through an experimental flow loop. The contact angles and adhesion work of liquids in contact with pipe surfaces were determined using a contact angle meter. Based on the dimension and regression analyses, two kinds of modified relationships between the frictional coefficient and the surface wettability were established according to the measured results corresponding to tap water in five pipes and four liquids in PTFE pipe. The experimental results show that the surface wettability has some influence on frictional coefficient of the studied liquids flowing in macroscale pipes, and the frictional coefficient decreases with the increase of the contact angle at the same Reynolds number. Meanwhile the effect of wettability on the hydrophobic surface is greater than that on the hydrophilic one. The frictional coefficients predicted by the modified formulas have verified to be in good agreement with the experimental values, the relative errors of which are within ±6% and ±3% for the tap water flowing in five different pipes and four kinds of liquids flowing in PTFE pipe, respectively. 展开更多
关键词 WETTABILITY contact ANGLE frictional COEFFICIENT ADHESION work fluid MECHANICS turbulent flow
下载PDF
Solution of general dynamic equation for nanoparticles in turbulent flow considering fluctuating coagulation 被引量:4
19
作者 Jianzhong LIN Xiao jun PAN +1 位作者 Zhaoqin YIN Xiaoke KU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1275-1288,共14页
A new averaged general dynamic equation (GDE) for nanoparticles in the turbulent flow is derived by considering the combined effect of convection, Brownian diffusion, turbulent diffusion, turbulent coagulation, and ... A new averaged general dynamic equation (GDE) for nanoparticles in the turbulent flow is derived by considering the combined effect of convection, Brownian diffusion, turbulent diffusion, turbulent coagulation, and fluctuating coagulation. The equation is solved with the Taylor-series expansion moment method in a turbulent pipe flow. The experiments are performed. The numerical results of particle size distribu- tion correlate well with the experimental data. The results show that, for a turbulent nanoparticulate flow, a fluctuating coagulation term should be included in the averaged particle GDE. The larger the Schmidt number is and the lower the Reynolds number is, the smaller the value of ratio of particle diameter at the outlet to that at the inlet is. At the outlet, the particle number concentration increases from the near-wall region to the near-center region. The larger the Schmidt number is and the higher the Reynolds num- ber is, the larger the difference in particle number concentration between the near-wall region and near-center region is. Particle polydispersity increases from the near-center region to the near-wall region. The particles with a smaller Schmidt number and the flow with a higher Reynolds number show a higher polydispersity. The degree of particle polydispersity is higher considering fluctuating coagulation than that without considering fluctuating coagulation. 展开更多
关键词 NANOPARTICLE general dynamic equation (GDE) fluctuating coagulation term particle distribution turbulent pipe flow
下载PDF
Drag reduction of turbulent channel flows over an anisotropic porous wall with reduced spanwise permeability 被引量:3
20
作者 Qingxiang LI Ming PAN +1 位作者 Quan ZHOU Yuhong DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第7期1041-1052,共12页
The direct numerical simulation (DNS) is carried out for the incompressible viscous turbulent flows over an anisotropic porous wall. Effects of the anisotropic porous wall on turbulence modifications as well as on the... The direct numerical simulation (DNS) is carried out for the incompressible viscous turbulent flows over an anisotropic porous wall. Effects of the anisotropic porous wall on turbulence modifications as well as on the turbulent drag reduction are investigated. The simulation is carried out at a friction Reynolds number of 180, which is based on the averaged friction velocity at the interface between the porous medium and the clear fluid domain. The depth of the porous layer ranges from 0.9 to 54 viscous units. The permeability in the spanwise direction is set to be lower than the other directions in the present simulation. The maximum drag reduction obtained is about 15.3% which occurs for a depth of 9 viscous units. The increasing of drag is addressed when the depth of the porous layer is more than 25 wall units. The thinner porous layer restricts the spanwise extension of the streamwise vortices which suppresses the bursting events near the wall. However, for the thicker porous layer, the wall-normal fluctuations are enhanced due to the weakening of the wall-blocking effect which can trigger strong turbulent structures near the wall. 展开更多
关键词 direct numerical simulation (DNS) ANISOTROPIC POROUS MEDIUM drag reduction turbulent open channel flow
下载PDF
上一页 1 2 241 下一页 到第
使用帮助 返回顶部