期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
Responses of soil stoichiometry and soil enzyme activities in the different distance around opencast coal mine of the Hulun Buir Grassland of China
1
作者 Yinli Bi Nan Guo +2 位作者 Yanxu Zhang Xianglei Li Ziheng Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期221-231,共11页
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis... The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes. 展开更多
关键词 Opencast coal mine soil stoichiometry soil enzyme activities DISTANCE GRASSLAND
下载PDF
The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function
2
作者 Qiao Li Jianying Guo +1 位作者 Han Zhang Mengxin Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期267-282,共16页
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro... Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics. 展开更多
关键词 plant invasion Bidens pilosa soil microbial composition soil properties soil enzyme activities
下载PDF
Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia,China
3
作者 SHEN Aihong SHI Yun +8 位作者 MI Wenbao YUE Shaoli SHE Jie ZHANG Fenghong GUO Rui HE Hongyuan WU Tao LI Hongxia ZHAO Na 《Journal of Arid Land》 SCIE CSCD 2024年第5期725-737,共13页
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s... It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems. 展开更多
关键词 proluvial fan desert plant community soil enzyme activity particulate organic carbon mineral-associated organic carbon Helan Mountain
下载PDF
Effects of Biostimulant NEAU10 on Growth of Rice Seedlings and Soil Physicochemical Parameters
4
作者 Ding Wei Pang Yingjie Cheng Zhuo 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期13-23,共11页
The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and... The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption. 展开更多
关键词 biostimulant rice seedling growth indicator soil enzyme activity nutrient element
下载PDF
Effects of Different Fertilization Treatments on Soil Microbial Biomass,Soil Enzyme Activities and Related Nutrients in Continuous-cropping Sugarcane Field 被引量:11
5
作者 陈桂芬 刘忠 +7 位作者 黄雁飞 谭裕模 唐其展 黄太庆 杨绍锷 廖青 邢颖 黄玉溢 《Agricultural Science & Technology》 CAS 2017年第2期256-261,324,共7页
[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvemen... [Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive. 展开更多
关键词 Continuous-cropping sugarcane field FERTILIZATION soil microbial biomass soil enzyme activity NUTRIENT
下载PDF
Effect of Protective Cultivation Patterns of Rice in Cold Areas on Soil Physiological and Biochemical Status in Paddy Field 被引量:8
6
作者 汪秀志 钱永德 +4 位作者 张德远 刘崇文 刘丽华 吕艳东 郑桂萍 《Agricultural Science & Technology》 CAS 2010年第2期183-188,共6页
[Objective] The research aimed to explore how to use the soil reasonably,prevent the degradation of soil fertility,maintain soil fertility,improve the ecological environment of paddy field and improve the soil product... [Objective] The research aimed to explore how to use the soil reasonably,prevent the degradation of soil fertility,maintain soil fertility,improve the ecological environment of paddy field and improve the soil productivity of paddy field from the cultivation aspect.[Method] Taking kenjiandao 10 as the material,the variation laws of root weight,soil physical and chemical characteristics,soil enzyme,straw decomposition rate,soil temperature,microorganism of rice under the planting patterns of water-saving pro... 展开更多
关键词 Tillage methods Paddy field soil physics and chemistry soil microorganism soil enzyme activity
下载PDF
Effects of Different Land Use Types on Soil Organic Carbon and Carbon Management Index in Karst Area 被引量:3
7
作者 杨慧 张连凯 +1 位作者 曹建华 侯彦林 《Agricultural Science & Technology》 CAS 2010年第9期136-139,共4页
[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbo... [Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbon and soil carbon management index(CMI)of different land use types in Guilin Maocun karst area were studied.Sampling with field investigation and laboratory testing was carried out.Heavy potassium chromate method was adopted to determine soil organic matter.333 mmol/L KMnO4 oxidation method was used to determine active organic carbon.[Result]With active soil organic matter increasing,the differences of CMI between different land use types were bigger.The CMI value of different land uses was shrubforest paddy fielddry farmland.The statistical analysis showed that labile organic matter was related with major soil properties at a significant level.[Conclusion]Labile organic matter could be used to reveal the influence of different land use types on soil organic matter and carbon management index in karst area. 展开更多
关键词 Karst area Land use types soil organic carbon Active soil organic matter Carbon management index(CMI)
下载PDF
Effects of Different Vegetable Planting Modes on Soil Microbial Flora and Enzyme Activity 被引量:1
8
作者 孟平红 肖厚军 +4 位作者 郭惊涛 蔡霞 潘德怀 付纪勇 李桂莲 《Agricultural Science & Technology》 CAS 2015年第10期2265-2268,2272,共5页
To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient... To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient planting modes,and the variations of soil microbial flora and enzyme activities were analyzed. The soil microbial count and total bacteria of the vegetable efficient cultivation mode were significantly higher than that of the control (traditional planting mode) in each planting area,and the microbial diversity index was also improved to varying de- grees.The soil phosphatase,catalase and urease activities of the vegetable efficient planting mode were higher than that of the control.The soil catalase and urease activities were higher than that of the control by 1.37-1.44 and 1.51-2.80 times. Application of vegetable efficient planting mode in different regions will help to im- prove the soil quality in a given period. 展开更多
关键词 VEGETABLE Efficient planting mode Growing region soil microbial flora soil enzyme activity Biodiversity index
下载PDF
Effects of Cadmium Contamination on Sugarcane Growth, Soil Microorganism and Soil Enzyme Activity
9
作者 廖洁 王天顺 +3 位作者 范业赓 何洁 黄芳 莫磊兴 《Agricultural Science & Technology》 CAS 2017年第12期2378-2382,共5页
[Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentr... [Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentrations of exogenous cadmium (Cd) on the growth of sugarcane, the quantities of soil microorganisms and the activity of soil enzymes were studied. [Method] The plant height, stem di- ameter and cane yield of sugarcane, the soil microbial quantities and enzyme activi- ties were determined by using sugarcane as a material treated with different Cd concentrations (0, 25, 50, 100, 250 and 500 mg/kg) under potted conditions. IRe- suit] The results showed that the plant height, stem diameter and the yield of sug- arcane decreased with the increase of Cd concentration in the soil, and the higher the Cd concentration, the more obvious the inhibitory effect. The Cd contamination changed the enzyme activity, and the activities of urease and acid phosphatase sig- nificantly decreased with the increase of Cd concentration, especially when the Cd concentration reached 100 mg/kg. The sensitivity of the two soil enzymes to Cd ranked as urease〉acid phosphatase. Cd contamination also changed soil microbial quantities. Fungi, bacteria and actinomycetes significantly decreased at the Cd con- centration level of 100 mg/kg. There were significant and highly significant correla- tions between Cd contamination concentration and fungi, bacteria and actinomycetes, the activities of urease and acid phosphatase, plant height, stem diameter as well as cane yield. [Conclusion] Under the conditions of potted planted sugarcane, ex- ogenous Cd contamination affected the growth of sugarcane, the quantities of soil microorclanisms and soil enzyme activities to different degrees. 展开更多
关键词 SUGARCANE CD soil microbial quantity soil enzyme activity
下载PDF
Impact of Transgenic Bt+CpTI Cotton on Soil Enzyme Activities and Soil Microorganisms
10
作者 刘红梅 宋晓龙 +3 位作者 皇甫超河 张贵龙 杨殿林 赵建宁 《Agricultural Science & Technology》 CAS 2013年第11期1610-1614,1619,共6页
Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important pa... Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important part of environmental risk assessment. Using transgenic Bt+CpTI cotton sGK321 and its parental homologous conventional cotton Shiyuan 321 as the study objects, a comparative analysis was conducted on the changes in enzyme activities (urease, alkaline phosphatase, and catalase) of the rhizosphere soil and changes in the number of culturable microor-ganisms (bacteria, fungi, and actinomycetes) at different growth stages (seedling stage, budding stage, flower and bol stage, and bol opening stage) of sGK321 and Shiyuan 321 under the condition of 13 years field plantings. The results showed that, the populations of bacteria, fungi, and actinomycete and the soil enzyme activi-ties of urease, alkaline phosphatase and catalase had a similar variation trend along with the cotton growing process for transgenic cotton and conventional cotton. Some occasional and inconsistent effects on soil enzyme activities and soil fungi composi-tion in the rhizosphere soil of transgenic Bt+CpTI cotton were found at the seedling stage, budding stage, flower and bol stage as compared with that of conventional cotton. The amount of bacteria and actinomycetes were not significantly different during a certain stage; however, the activities of urease, catalase, alkaline phos-phatase, also with the number of fungi were significantly different, e.g. the urease activities at seedling stage, the alkaline phosphatase at seedling and budding stages, and the soil culturable fungi at flower and bol stage were less than that of conven-tional cotton, while the soil alkaline phosphatase activities at flower and bol stage were higher. Cluster analysis showed that soil enzyme activities and microbial popu-lation changed mainly along the growth processes, suffering little from the planting of transgenic Bt+CpTI cotton. 展开更多
关键词 Transgenic Bt+CpTI cotton Growth stage soil enzyme activities soil microorganisms
下载PDF
Variation of Enzyme Activity in Flue-cured Tobacco-growing Soil Planted with Different Lastseason Crops
11
作者 毛振萍 冯成恩 +5 位作者 周冀衡 向炳清 吴春发 邓蓓蕾 刘红 王婧 《Agricultural Science & Technology》 CAS 2014年第10期1719-1722,1769,共5页
The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with diff... The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with different last-season crops was in-vestigated at different growth stages in this study. The results showed the activity variation of the 3 enzymes differed in the 2 soils at different growth stages. The catalase activity in the arid red soil trended to decrease overal from the vigorous growing stage to harvesting stage; while it decreased gradual y in the rice soil until the harvesting stage. The phosphatase activity in the 2 soils al increased with the proceeding of growth period. The urease activity in the arid red soil decreased gradual y at different growth stages, but the variation of urease activity in rice soil was irregular. During the growth of flue-cured tobacco, the catalase and urease ac-tivity in the arid red soil increased first and then decreased, and the phosphatase activity increased gradual y. ln rice soil, the catalase activity increased first and then decreased; the phosphatase activity decreased first and then increased; the urease activity increased first, then decreased and increased last. The activity of al the en-zymes in the 2 soils showed significant differences compared to the control except some enzymes at the vigorous growing stage. lt was suggested the planting of flue-cured tobacco would affect greatly the soil enzyme activities. 展开更多
关键词 Flue-cured tobacco soil type soil enzyme activity Growth of flue-cured tobacco
下载PDF
Effect of Combined Application of Manure and Chemical Fertilizer on the Dynamic Changes of Purple Soil Nutrient and Soil Enzyme Activities
12
作者 施娴 袁玲 《Agricultural Science & Technology》 CAS 2011年第5期765-767,775,共4页
[Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertil... [Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertilizer application on the content of AOM,NH+4-N and NO-3-N in soil as well as release dynamics of enzyme activities were studied by means of simulation culturing.[Result] In the treatments of combined application of simulation culture experiment,the content of active organic matters,NH+4-N,NO-3-N and soil enzyme activities changed dynamically,which showed a shape of inverted "S" with two or more peaks.Compared with the treatment of fertilization,their peaks were relatively flat and occurred relatively late,while the treatment of fertilization had only one but the highest peak.The content of active organic matter came to top around 10 d in the order of cow5fertilizer5pig5fertilizer5cow manurepig manurefertilizer Ⅰfertilizer Ⅱ;the activity of urease came to top around 10 d in all treatments and in the order of pig manurecow5fertilizer5cow manurefertilizer Ⅰfertilizer Ⅱpig5fertilizer5.The activity of saccharase was in the order of pig5fertilizer5pig manurecow5fertilizer5cow manureCKfertilizer Ⅱfertilizer Ⅰ.[Conclusion] The study could provide the theoretical basis for reasonable application of manure and fertilizer. 展开更多
关键词 MANURE soil nutrients soil enzyme activities Dynamic changes
下载PDF
Impact of Vanadium on Enzyme Activity and Microbial Biomass in Soils
13
作者 田丽燕 黄仁豪 《Agricultural Science & Technology》 CAS 2013年第3期483-489,共7页
[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like ... [Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like to investigate the changes of the soil enzyme activity and microbial biomass at different growing stages of rape (Brassica juncea L.) at different soil vanadium concentrations (soil background value was 147 mg/kg, spiked with 0, 50, 100, 150, 250 and 500 mg/kg of exogenous vanadium). [Result] Among all enzymes examined, polyphenol oxidase was most sensitive to soil vanadium. Addition of 50 mg/kg vanadium decreased its activity up to 56% of the control probably due to the vanadium toxicity. In comparison, the ac- tivities of sucrase, urease and catalase was less affected by soil vanadium. Surpris- ingly, the activity of sucrase, urease and catalase at the rape seedling stage differed significantly from at the maturity stage, highlighting the potential impact of plant growth on the vanadium-soil enzyme interaction. Different soil vanadium concentra- tions led to increases of microbial biomass to different extents. However, the corre- lation between soil microbial biomass carbon and phosphorus with vanadium con- centrations was insignificant. This revealed that the presence of additional factors (eg. plant) affected soil microbial biomass carbon and phosphorus aside from soil vanadium. [Conclusion] Polyphenol oxidase may be considered as an indicator of soil vanadium contamination. Due to the highly complicated interaction between vanadium and soil biological activities during plant growth, more investigations are required to reveal the mechanisms beyond our findings here. 展开更多
关键词 VANADIUM soil soil enzyme activity soil microbial biomass
下载PDF
Soil Enzyme Activities with Greenhouse Subsurface Irrigation 被引量:24
14
作者 ZHANG Yu-Long WANG Yao-Sheng 《Pedosphere》 SCIE CAS CSCD 2006年第4期512-518,共7页
Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation schedulin... Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion (MAD) designed for different treatments (-10, -16,-25,-40, and-63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16 kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast, the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production. 展开更多
关键词 irrigation scheduling soil enzyme activity subsurface irrigation TOMATO
下载PDF
Effects of Long-Term Combined Application of Organic and Mineral Fertilizers on Microbial Biomass,Soil Enzyme Activities and Soil Fertility 被引量:54
15
作者 LI Juan ZHAO Bing-qiang +2 位作者 LI Xiu-ying JIANG Rui-bo So Hwat Bing 《Agricultural Sciences in China》 CAS CSCD 2008年第3期336-343,共8页
Soil health is important for the sustainable development of terrestrial ecosystem. In this paper, we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil ... Soil health is important for the sustainable development of terrestrial ecosystem. In this paper, we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil enzyme activities in order to illustrate the function of soil microbial properties as bio-indicators of soil health. In this study, microbial biomass C and N contents (Cmic & Nmic), soil enzyme activities, and soil fertility with different fertilizer regimes were carried out based on a 15-year long-term fertilizer experiment in Drab Fluvo-aquic soil in Changping County, Beijing, China. At this site, 7 different treatments were established in 1991. They were in a wheat-maize rotation receiving either no fertilizer (CK), mineral fertilizers (NPK), mineral fertilizers with wheat straw incorporated (NPKW), mineral fertilizers with incremental wheat straw incorporated (NPKW+), mineral fertilizers plus swine manure (NPKM), mineral fertilizers plus incremental swine manure (NPKM+) or mineral fertilizers with maize straw incorporated (NPKS). In different fertilization treatments Cmic changed from 96.49 to 500.12 mg kg^-1, and Nmic changed from 35.89 to 101.82 mg kg^-1. Compared with CK, the other treatments increased Cmic & Nmic, Cmic/Corg (organic C) ratios, Cmic/Nmic, urease activity, soil organic matter (SOM), soil total nitrogen (STN), and soil total phosphorus (STP). All these properties in treatment with fertilizers input NPKM+ were the highest. Meantime, long-term combined application of mineral fertilizers with organic manure or crop straw could significantly decrease the soil pH in Fluvo-aquic soil (the pH around 8.00 in this experimental soil). Some of soil microbial properties (Cmic/Nmic, urease activity) were positively correlated with soil nutrients. Cmic/Nmic was significantly correlated with SOM and STN contents. The correlation between catalase activity and soil nutrients was not significant. In addition, except of catalase activity, the soil pH in this experiment was negatively correlated with soil microbial properties. In conclusion, soil microbial properties reflect changes of soil quality and thus can be used as bio-indicators of soil health. 展开更多
关键词 long-term fertilizer experiment soil microbial biomass soil enzyme activities soil fertility
下载PDF
Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China 被引量:23
16
作者 HUANG Wan WU Jian-fu +5 位作者 PAN Xiao-hua TAN Xue-ming ZENG Yong-jun SHI Qing-hua LIU Tao-ju ZENG Yan-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期236-247,共12页
Long-term straw return is an important carbon source for improving soil organic carbon(SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China. However, the ... Long-term straw return is an important carbon source for improving soil organic carbon(SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China. However, the specific effects of long-term rice straw management on SOC fractions, the related enzyme activities and their relationships, and whether these effects differ between crop growing seasons remain unknown. Three treatments with equal nitrogen, phosphorus, and potassium nutrient inputs, including straw/ash and chemical nutrients, were established to compare the effects of straw removal(CK), straw return(SR), and straw burned return(SBR). Compared to CK, long-term SR tended to improve the yield of early season rice(P=0.057), and significantly increased total organic carbon(TOC) and microbial biomass carbon(MBC) in double-cropped rice paddies. While SBR had no effect on TOC, it decreased light fraction organic carbon(LFOC) in early rice and easily oxidizable organic carbon(EOC) in late rice, significantly increased dissolved organic carbon(DOC), and significantly decreased soil p H. These results showed that MBC was the most sensitive indicator for assessing changes of SOC in the double-cropped rice system due to long-term straw return. In addition, the different effects on SOC fraction sizes between SR and SBR were attributed to the divergent trends in most of the soil enzyme activities in the early and late rice that mainly altered DOC, while DOC was positively affected by β-xylosidase in both early and late rice. We concluded that straw return was superior to straw burned return for improving SOC fractions, but the negative effects on soil enzyme activities in late rice require further research. 展开更多
关键词 double-cropped rice paddy system straw return straw burned return SOC fractions soil enzyme activities
下载PDF
Soil Fertility in Agroforestry System of Chinese Fir and Villous Amomum in Subtropical China 被引量:14
17
作者 YANG YUSHENG, CHEN GUANGSHUI and YU XINTUO Fujian Agriculture and Forestry University, Nanping 353001 (China) 《Pedosphere》 SCIE CAS CSCD 2001年第4期341-348,共8页
A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey... A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China. 展开更多
关键词 AGROFORESTRY Chinese fir soil biological activity soil humus soil structure
下载PDF
Differences in Soil Microbial Biomass and Activity for Six Agroecosystems with a Management Disturbance Gradient 被引量:11
18
作者 ZHANGWei-Jian FENGJin-Xia +1 位作者 J.WU K.PARKER 《Pedosphere》 SCIE CAS CSCD 2004年第4期441-448,共8页
Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an o... Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass. 展开更多
关键词 AGROECOSYSTEMS carbon retention disturbance intensity microbial biomass soil microbial activity
下载PDF
Soil Microbial Activity During Secondary Vegetation Succession in Semiarid Abandoned Lands of Loess Plateau 被引量:13
19
作者 JIANG Jin-Ping XIONG You-Cai +3 位作者 JIANG Hong-Mei YE De-You SONG Ya-Jie LI Feng-Min 《Pedosphere》 SCIE CAS CSCD 2009年第6期735-747,共13页
To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-... To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, and 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and earboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P 〈 0.5), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions. 展开更多
关键词 microbial biomass carbon microbial biomass nitrogen SOC soil enzyme activity
下载PDF
Characteristics of Hydrologic Transfer between Soil and Atmosphere over Gobi near Oasis at the End of Summer 被引量:7
20
作者 张强 宋连春 +3 位作者 黄荣辉 卫国安 王胜 田辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期442-452,共11页
By utilizing the data observed at Dunhuang during August and September 2000 in the 'Field Experiment on Interaction between Land and Atmosphere in the Arid Region of Northwest China (FEILARNC)', the characteri... By utilizing the data observed at Dunhuang during August and September 2000 in the 'Field Experiment on Interaction between Land and Atmosphere in the Arid Region of Northwest China (FEILARNC)', the characteristics of the soil moisture, temperature, and atmospheric humidity are analyzed. It is found that the thickness of the soil temperature active layer is about 5 cm and much thinner than is typical, that not only the atmospheric humidity gradient is often inverted but also the soil moisture gradient in the shallow layer in the Gobi near oasis, that the diurnal variation of soil moisture can be divided into the four stages that are called the wet stage, the losing-water stage, the dry stage, and the attaining-water stage. It is shown that in soil moisture profiles, the depth of the soil moisture active layer is about 10 cm and soil moisture inversion is the main feature in the shallow layer during the wet stage. Such a feature as soil moisture inversion indicates that soil in the shallow layer can inhale moisture from the air through condensation in the nighttime and exhale moisture to the air through evaporation in the daytime. The condensation and evaporation constitute together the full respiration process of moisture on the ground. The formation of soil moisture inversion is related with the state of soil temperature and moisture, the intensity of atmospheric humidity inversion, and the atmospheric thermodynamic stability. 展开更多
关键词 GOBI soil active layer atmosphere specific humidity inversion soil moisture inversion RESPIRATION
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部